[image: image1.png]&g convio

DYNAMICALLY EMBEDDING REMOTE FLASH MOVIES IN PAGEBUILDER WITH SWFOBJECT
Overview

Embedding a remote Flash object in Convio PageBuilder and StoryBuilder is not difficult. However, publishing nonsecure content as a YouTube Flash movie in a secure page, such as a Convio donation form, causes the Microsoft Internet Explorer browser to generate a mixed content error message. The reason for this unpleasant user experience is that the SSL-secured (HTTPS) page is trying to load content from a non-SSL (HTTP) source.
This problem cannot be surmounted with markup alone. For example, you are not able arbitrarily to recast an HTTP protocol,

http://www.youtube.com/v/b-tYxJcFj9I&hl=en
as an HTTPS one,

https://www.youtube.com/v/b-tYxJcFj9I&hl=en

If you control the loading dynamically, using JavaScript, the problem is solved with script.
Solution

The solution identified was to apply the dynamic publishing method of Google’s SWFObject library and its JavaScript API. The Google SWFObject has the following advantages:
· provides a dynamic publishing method that permits commingling insecure and secure content
· offers a JavaScript API that provides a complete tool set for embedding SWF files and retrieving Flash Player information
· standardizes the process
· uses one small JavaScript file
· is open source
· reverts to alternative content if an outdated plugin is used
· applies Adobe Express to download and install the latest Flash Player
· avoids triggering click-to-activate mechanisms
· supports extensive control over the Flash Player

This document discusses embedding remote Flash movies, especially those on YouTube, in a secure Convio page by means of the SWFOjbect dynamic publishing method. It references both Google’s documentation both for standard SWFOjbect applications and Google’s documentation for the YouTube API.
Implementation
[[U6]]
The Convio WYSIWYG hides the head element of an HTML page from the developer. However, Google’s swfobject.js needs to be loaded in the head of the page. To fix this problem, a new tag, [[U6]], was developed. [[U6]] is provided as a handy tool for adding swfobject.js to the head element of the page.
With [[U6]] the library can be referenced with a full URL, in which case the tag will automatically change the protocol to https if the page to be rendered is secure. Note that if the Convio library is called, the path does not have to be specified.
For a local, Convio client-based instance of swfobject.js, [[U6:swfobject.js]] resolves to:
<script type="text/javascript" src="../swfobject.js"></script>
For an absolute path instance of the library, [[U6:http://www. cccp.org/js/swfobject.js]] in a page that will itself be rendered as secure resolves to:
<script type="text/javascript" src="https://www. cccp.org/js/swfobject.js"></script>

Because the non-SSL path is converted to an SSL-secured one by serverside scripting, this surmounts the problem with markup discussed in the Overview.
Embedding Flash Player Content with SWFObject’s Dynamic Publishing
Working with SWFObject’s dynamic publishing method starts with alternative content. That content would typically be a transcript of the Flash movie, including any dialogue and scene descriptions. The sound track, including dialogue, music and special effects, can be included as an audio file if it is synchronized with a transcript. Section 508 compliance requires that any functionality and any information available in Flash must also be available in the alternative content.

The JavaScript in swfobject.js will replace the alternative content with a Flash movie if the minimal Flash Player version is installed on the user’s system and if the JavaScript is supported in the user’s browser. The advantages of this dynamic publishing method’s are:
· the dynamic replacement of content is handled with JavaScript and mixed content displays with no error message
· no click-to-activate mechanisms are triggered in Internet Explorer 6/7 and Opera 9+
· the scripted approach is extensible to other applications

For details about how to reference the active object element, refer to the JavaScript API, swfobject.getObjectById(objectIdStr). That document can be found online at: http://code.google.com/p/swfobject/wiki/api.
The Three Steps to Configuring SWFObject

The first step is to create alternative content using standards-compliant markup. Enclose that content in a div element, adding a unique id to the div:

 <div id="myContent">
 <p>Alternative content</p>
 </div>

The second step is to include the SWFObject JavaScript library in the head of your HTML page. The shorthand approach in Convio is:
[[U6:swfobject.js]]

Use an absolute or relative path to the SWFObject library if the Flash movie is in a different directory from your Convio template. For example:
[[U6:../scripts/swfobject.js]]

would be rendered in an HTML page as:

<html>
 <head>
 <title>SWFObject dynamic embed </title>
 <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
 <script type="text/javascript" src="../scripts/swfobject.js"></script>
 </head>
 <body>
 <div id="myContent">
 <p>Alternative content</p>
 </div>
 </body>
</html>
The third step is to embed your Flash content dynamically with swfobject.embedSWF(). This library command is expressed with up to nine arguments, five of which are required:
swfobject.embedSWF(swfUrl, id, width, height, version, expressInstallSwfurl, flashvars, params, attributes)
Note: the names applied to the arguments are arbitrary and are intended to indicate their values.

The following HTML page demonstrates using swfobject.embedSWF() with the five required parameters (swfUrl, id, width, height, version):

<html>

 <head>
 <title>SWFObject dynamic embed - step 3</title>
 <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
 <script type="text/javascript" src="swfobject.js"></script>
 </head>
 <body>

 <script type="text/javascript">
 swfobject.embedSWF("myContent.swf", "myContent", "300", "120", "9.0.0");
 </script>
 <div id="myContent">
 <p>Alternative content</p>
 </div>
 </body>
</html>

The five required arguments to swfobject.embedSWF() are:

1. swfUrl is a string that specifies the relative or absolute URL to your Flash content

2. id is a string that specifies the id of the HTML element containing your alternative content
3. width is a string that specifies your Flash content’s display width

4. height is a string that specifies your Flash content’s display height

5. version is a string that specifies the Flash player version for which your Flash content is published

The remaining four, optional, arguments to swfobject.embedSWF() are:

1. expressInstallSwfurl is a string that specifies the URL of your express install SWF and activates Adobe express install
2. flashvars is a string that specifies your flashvars with name:value pairs
3. params is a string that specifies your nested object element params with name:value pairs
4. attributes is a string that specifies your object's attributes with name:value pairs
You can omit the optional parameters as long as you maintain the sequence of all the parameters. If you do not want to use one optional parameter, but would like to use a following one, pass false as the value of the first parameter. For the flashvars, params and attributes JavaScript Objects, you can also pass an empty object instead: {}. This technique is illustrated in code samples below.
Defining the Path to a YouTube Flash

The above code sample (swfobject.embedSWF("myContent.swf", "myContent", "300", "120", "9.0.0");) would suffice to load a Flash movie named myContent.swf on the same server . To display a Flash movie hosted on YouTube, you must provide the absolute URL, along with an instruction to enable JavaScript interacting with remote Flash:

 <script type="text/javascript">
 swfobject.embedSWF("http://www.youtube.com/ v/I8xZBfVsMzs&enablejsapi=1", "myContent", "300", "120", "9.0.0");
 </script>
You acquire the URL from the YouTube page hosting the video you want to embed in your Convio-hosted content. You can find that URL in the location field near the top of your browser. It is the blue highlighted content in the screen capture below:

[image: image2.jpg]APIs and Tools Tutorial - Mozilla

Ele Edt View Hstory Bookmarks Ioos Help

Q¢ ~ ;
5] Most visted > Getting Started (. Latest Headines 8] Relly Login <4/ Feature Surmary Doc... 3 SWFObject 2 HTHL an... || YouTube Javascript Pl
YouQULL) worewide cngicn SianUp | QuicLst ©) | Hep | san

Home | Videos | Channels | Community Search

YouTube Player APIs and Tools Tutorial

The Google Code Channel

| GoogleDevelopers [suscre |
March 12, 2008

| (0 010)

Stephanie Liu gives a shorttutorial on the basic

functionality available in the JavaScript and Flash

player APIs, as well as the Chromeless Player.
Read up: hitp:izode google comiapis... .

Player APIs and Tools Tutorial
URL [youtsbe combton vzt

V(i1 Tube Mor From:Gaepevlpers
= Google /0 2008 - Design Your

7,676 views
B= GoogleDevelopers

e YouTube APt Upoad,
Piayer A and more
a0 = T s 2

> @ w005 1120

The same URL is offered in the “URL” field in the gray area to the right of the actual video. The value in this case is:

http://www.youtube.com/watch?v=I8xZBfVsMzs
That value is the path to the video from HTML markup and must be modified slightly to work with swfobject.js. Performing that modification is a two step process:

1. Replace “watch?v=” with “v/” -- you will have http://www.youtube.com/v/I8xZBfVsMzs
2. Append “&enablejsapi=1” onto the end of the string -- you will have the correct path:

http://www.youtube.com/v/I8xZBfVsMzs &enablejsapi=1

The “&” is code for “&” and is needed because the string is being read by JavaScript (which would interpret that character as JavaScript). The “enablejsapi=1” is required to use JavaScript to access the video from a remote location. The result is the absolute minimum code you need to embed YouTube Flash movies dynamically in secure content pages:

 swfobject.embedSWF("http://www.youtube.com/ v/I8xZBfVsMzs&enablejsapi=1", "myContent", "300", "120", "9.0.0");

A complete example, invoking all nine parameters and applying all techniques discussed above is:

"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<title></title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">

<script type="text/javascript" src="swfobject.js"></script>

<script type="text/javascript">
/*Assign the URL to the video to a JavaScript variable and you can dynamically

load a different video with script */

var swfURL="http://www.youtube.com/v/KJMxGFco57Y&enablejsapi=1";

/* The following four lines illustrate different ways of using (and not using) the optional

Parameters */

var flashvars = {};

//The next line is needed for JavaScript to access the Flash player

 var params = { allowScriptAccess: "always" };

var attributes = {};

attributes.id = "amyContent";

//Here is the complete expression of swfobject.embedSWF()

swfobject.embedSWF(swfURL,"myContent", "800", "600", "9.0.0", "expressInstall.swf", flashvars, params, attributes);

</script>

</head>

<body>?

<div id="myContent">

</div>

</body>

</html>
Using JavaScript Objects to Define flashvars, params and Object Attributes

The optional arguments to swfobject.embedSWF() – flashvars, params, and attributes – are considered JavaScript Objects. Hence, they are best defined with Object literal notation. Here is the basic syntax, with empty values:

 <script type="text/javascript">
 var flashvars = {};
 var params = {};
 var attributes = {};
 swfobject.embedSWF("myContent.swf", "myContent", "300", "120", "9.0.0","expressInstall.swf",
 flashvars, params, attributes);
 </script>
When defining values for the objects, you assign them as name:value pairs. (Caution: do not add a comma after the last name:value pair inside an Object.) Enclose the name:value pairs within the curly braces and use the equal symbol to assign the pairs to the Object:
 <script type="text/javascript">
 //object definition with 3 name : value pairs
 var flashvars = {
 name1: "hello",
 name2: "world",
 name3: "foobar"
 };
 //single name : value pair defined
 var params = {
 menu: "false"
 };

 var attributes = {
 id: "myDynamicContent",
 name: "myDynamicContent"
 };
 //The value of params below is understood by the JavaScript to be menu:’false’

 swfobject.embedSWF("myContent.swf", "myContent", "300", "120", "9.0.0","expressInstall.swf",
 flashvars, params, attributes);
</script>

Note: You can add properties and values after creating an object by using dot notation. To do so, append the name side of the name:value pair to your object name with a dot :
 <script type="text/javascript">

 //The Object name is flashvars
 var flashvars = {};
 //The next line was name1: “hello” in the earlier example, above
 flashvars.name1 = "hello";
 flashvars.name2 = "world";
 flashvars.name3 = "foobar";

 var params = {};
 params.menu = "false";
 var attributes = {};
 attributes.id = "myDynamicContent";
 attributes.name = "myDynamicContent";

 swfobject.embedSWF("myContent.swf", "myContent", "300", "120", "9.0.0","expressInstall.swf",
 flashvars, params, attributes);
 </script>
Conclusion

This document presents a rudimentary implementation of Google’s SWFObject JavaScript API and its YouTube JavaScript API. The code examples provided are adequate to support successful rendering of mixed content – a remote Flash movie embedded in a secure donation form page, for example. Google’s JavaScript API for YouTube provides a considerable breadth of functionality beyond the scope of this document. Developers who want more than static movie display should explore those features. The URL is provided in the references section.

References

The reference documentation for Google’s YouTube JavaScript API is online at: http://code.google.com/apis/youtube/js_api_reference.html
Google’s documentation for SWFObject is online at: http://code.google.com/p/swfobject/wiki/documentation

 Google documents the SWFObject JavaScript API online at: http://code.google.com/p/swfobject/wiki/api

Google’s swfobject.js release 2.1 is required for this functionality and can be downloaded in the green area to the right of the page, in a link titled swfobject_2_1.zip, at: http://code.google.com/p/swfobject/
