/anaplan

Optimizer Training – Use Case Example Territory Assignment

Anaplan Optimizer

The Anaplan Optimizer aids business planning and decision-making by solving complex problems involving millions of combinations quickly to provide a solution that is either the most feasible, or the one that is closest to your configured objective, such as most profitable, fastest, or cheapest.

The Anaplan Optimizer is configured through a dashboard, which allows you to make speculative ad-hoc changes to the input parameters for immediate results. This enables the end user to create and run optimization queries without any additional expense for IT personnel. The entire process is streamlined because the model builder and the end user can perform all their work in Anaplan without need for an analyst or programmer to write code for a new application, or for the end user to export Anaplan data to an external tool, work with that tool, and then import the results into the Anaplan model.

Optimization provides the solution for a selected variable within your Anaplan model that matches your requirement, using the values of other formula cells in your model. Optimizer makes use of linear programming to automate applying a huge number of combinations in a 'what-if' analysis to calculate either a set objective or the most feasible solution, for example maximum profit or minimum cost.

Optimizer is an entitled service, so you need to opt-in to access the feature. Your Account Executive will assist you in structuring and formatting your enabled models.

Some problems may not result in any feasible solution (and thus no optimal solution). This can't be detected prior to running Optimizer but an explicit error message is displayed in such cases.

What problems can you solve with Linear Programming?

Linear programming can be used to model and analyze a wide range of business problems in planning, routing, assignment, and scheduling. It can be used to solve planning problems, such as how to maximize profit, or reduce cost by creating a formula or expression, giving values to the variables that influence the problem and returning a solution.

The expression for maximizing profit or minimizing cost is known as the Objective Function, and the goal of linear programming is to optimize this Objective Function.

Optimizer has been successfully implemented across all Lines of Business, for a variety of use cases, such as:

Matching supply and demand, Sales Territory assignment, Investment portfolio balancing, Corporate Long-Range Planning, HR Staffing, etc.

Use the Optimizer Solution

Optimizer is an opt-in, additional cost component within Anaplan. Optimizer must be enabled in your workspace. Your Account Executive will help you set up Optimizer in your enabled model. The solution will be unique to your problem and constraints, and your dashboard will reflect this. Typically, each dashboard will feature:

- Input boxes where you can enter values appropriate to your scenario.
- The button on the dashboard that runs the Optimizer.
- Variables boxes where your solution is displayed.

This allows any end user with access to the Optimizer dashboard to update the input variables and run the Optimizer as often as needed.

Limitations

Some complex problems may not result in any feasible or optimal solution. This can't be detected prior to running Optimizer. Make sure you build your dashboard in a way that alerts the end-user of inappropriate values to minimize this possibility.

Optimizer solves only linear problems. Non-linear problems, such as a transportation scheduling problem involving rush hour, where a non-linear (logarithmic) increase of vehicles eventually causes exponential delays due to traffic jams, are not in scope.

Anaplan Optimizer supports the use of three comparators in expressions:

- greater than or equal to (<=)
- equal to (=)
- less than or equal to (>=)

All line items involved in the problem must have **Time Scale** and **Versions** set as **Not Applicable**. Optimizer doesn't support **Time** or **Versions**.

The Optimizer calculates one variable for optimality or feasibility.

Running an Optimizer process provides the standard audit features. The model history shows who made the changes and when the change occurred but does not show the before-and-after values.

There is no undo. The workaround is Restoring model to historical ID. Automation of an action that runs the Optimizer is not supported by Anaplan Connect and the Anaplan API.

Performance considerations

Be aware that while the Optimizer process is running and calculating the solution, the Anaplan model is locked so we recommend that you test in a sandbox or test environment. If a problem is so complex that the Optimizer processing time is too long, consider separating the Optimization model from the production model and contact Anaplan Support to share your experience.

For performance analysis, consider isolating inputs to your optimization problem (objective, variable, and constraints) into distinct modules so that you can easily identify them.

If the use case allows, breakdown your lists into subsets and run Optimizer sequentially.

Glossary

TERM	DEFINITION		
Objective Function	The expression that guides the optimization engine while it determines which assignments best support the business goal or solution, such as maximum income or minimal expense.		
Variable	The value that represents the solution to the problem (sometimes called the decision variable).		
Variable Data Type (Variables must have a numeric data type)	Integer (whole number)Real (floating point)Binary (zero or one)		
Input Data	Values necessary for computing the solution, including any constraints.		
Constraint	A limit on a value, such as its maximum, minimum, or that the value can't be negative.		
Upper bound, Lower bound	The maximum or minimal value for the variable.		
Linear function	When a change in value to one variable causes a directly proportional corresponding increase (or decrease) in the value of the other variable. Such a relationship displays as a straight line on a graph.		
Linear program	The pursuit of a solution in the form of a real number, where the Objective Function and the constraints are linear.		
Integer linear program	A linear program where variables are constrained to integral values (whole numbers).		
Mixed integer linear program	A linear program where only some of the variables are constrained to integral values. Other variables can be real values (decimal numbers).		
Optimality	The best solution to a problem with:		
Feasibility	An alternative to optimality, this offers the possible solutions to a problem with:		
Time Out	The number of seconds until an Optimizer action that is processing stops and abandons progress. This value must be set when creating an Optimizer action to prevent Optimizer running indefinitely if a problem is unsolvable.		

EXERCICE

Use Cases

Use Case#1: New Territories Assignment Use Case#2: Territories Replenishment

Data Set

Lists:

Name	Parent
Geo	Total company
Region	Geo
POD (Point of Delivery)	Region
Territory	POD

Account	All
Segment	All
Industry	All
State	All

Module

Name	Functional Area	Applies to
DAT01: Account Load	Data	Accounts
INP01: Select POD to Apply	Input	POD
INP02: Pick Constraints	Input	
INP03: Territory Segment	Input	Segment
INP04: Territory Details	Input	Territory
OUT01: Territory Details	Output	Territory

Use Case#1 New Territories Assignment

Step by Step

1/ Set-up Subset lists

Create Subset lists to run Optimizer sequentially and reduce processing time. Identify a way to breakdown Account and Territory lists. In our example, we know that an Account can only be assigned to a Territory within the same point of delivery (POD).

a)

Open module: **DAT01: Account Load** Create line item: **ss Account: AMS**

• Format: Boolean

Formula: 'INP01: Select POD to Apply'.Apply[lookup:POD]

b)

Open module: DAT01: Account Load

Create line item: ss Account: Unassigned AMS

Format: Boolean

Formula: Unassigned Account AND 'ss Account: AMS'

c)

Open list: Account

Create Subsets ss Account: AMS and ss Account: Unassigned AMS

Load Subsets from DAT01: Account Load

d)

Open module: INPO4: Territory Details Create line item: ss Territory: POD

• Format: Boolean

Formula: 'INPO1: Select POD to Apply'.Apply[lookup:POD]

e)

Open module: INPO4: Territory Details Create line item: ss Territory: AMS New

• Format: Boolean

Formula: New Territory AND 'ss Territory: AMS'

f)

Open list: Territory

Create Subsets Territory: AMS and ss Territory: AMS New

Load Subsets from INPO4: Territory Details

We will use the Subset ss Account: AMS and Territory: AMS for existing Territories replenishment and ss Account: Unassigned AMS and ss Territory: AMS New to assign accounts to new Territories.

g)

Open Actions: create 2 processes, **Territory Assignment AMS** and **Territory Assignment AMS New**. Add the 2 Subset creation actions to the 2 processes.

2/ Create your Optimizer Calculation module (New Territories only)

a)

Create a module

Name	Functional Area	Applies to
OPT01: CAL Optimizer_AMS	Calcul	ss Account: Unassigned AMS, ss Territory:
New		AMS New

b)

Create Line items

Name	Format	Formula	
Variable	Number		
Objective	Number	Variable*'DAT01: Account Load'.Account	
		Potential	
POD Constraint Staging	Number	IF 'INP04: Territory Details'.POD = 'DAT01:	
		Account Load'.POD THEN 1 ELSE 0	
State Constraint Staging	Number	IF ISBLANK('INPO4: Territory Details'.State)	
		OR 'INPO4: Territory Details'.State =	
		'DAT01: Account Load'.State THEN 1 ELSE 0	
Industry Constraint Staging	Number	IF ISBLANK('INPO4: Territory	
		Details'.Industry) OR 'INP04: Territory	
		Details'.Industry = 'DAT01: Account	
		Load'.Industry THEN 1 ELSE 0	
Segment Constraint Staging	Number	IF ISBLANK('INPO4: Territory	
		Details'.Segment) OR 'INP04: Territory	
		Details'.Segment = 'DAT01: Account	
		Load'.Segment THEN 1 ELSE 0	
Territory New	List.Territory	IF Variable > 0 THEN ITEM(Territory) ELSE	
		BLANK	

3/ Create your Optimizer Constraint module (New Territories only)

a)

Create a module

Name	Functional Area	Applies to	
OPT02: SYS Constraints_AMS	System	ss Account: Unassigned AMS, ss	
New		Territory: AMS New	

b) Create Line items

Name	Format/Summary	Formula	Applies to
POD Constraint	Boolean/All	'OPT01: CAL Optimizer_AMS	ss Account:
		New'.Variable <= 'OPT01: CAL	Unassigned AMS, ss
		Optimizer_AMS New'.POD	Territory: AMS New
		Constraint Staging	
State	Boolean/All	'OPT01: CAL Optimizer_AMS	ss Account:
Constraint		New'.Variable <= 'OPT01: CAL	Unassigned AMS, ss
		Optimizer_AMS New'.State	Territory: AMS New
		Constraint Staging	
Industry	Boolean/All	'OPT01: CAL Optimizer_AMS	ss Account:
Constraint		New'.Variable <= 'OPT01: CAL	Unassigned AMS, ss
		Optimizer_AMS	Territory: AMS New
		New'.Industry Constraint	
		Staging	
Segment	Boolean/All	'OPT01: CAL Optimizer_AMS	ss Account:
Constraint		New'.Variable <= 'OPT01: CAL	Unassigned AMS, ss
		Optimizer_AMS	Territory: AMS New
		New'.Segment Constraint	
		Staging	
Max Account	Boolean/All	ISBLANK('INP04: Territory	ss Territory: AMS
Constraint		Details'.Segment) OR 'INP03:	New
		Territory Segment'.Max	
		Accounts[LOOKUP: 'INP04:	
		Territory Details'.Segment] >=	
		'OPT01: CAL Optimizer_AMS	
		New'.Variable	
Unique	Boolean/All	'OPT01: CAL Optimizer_AMS	ss Account:
Assignment		New'.Variable <= 1	Unassigned AMS

3/ Create your Optimizer Option

a)

Open Actions: New Action -> Optimizer

Button Text: Territory Assignment AMS New

Problem: Linear Programming

Objective: Maximize

Objective Line Item: OPT01: CAL Optimizer AMS New.Objective

Variable 1: OPT01: CAL Optimizer AMS New. Variable

Variable 1 Format: Binary (0-1)

Constraint 1: OPT02: SYS Constraints_AMS New.POD Constraint
Constraint 2: OPT02: SYS Constraints_AMS New.State Constraint
Constraint 3: OPT02: SYS Constraints_AMS New.Industry Constraint
Constraint 4: OPT02: SYS Constraints_AMS New.Segment Constraint
Constraint 5: OPT02: SYS Constraints_AMS New.Max Account Constraint
Constraint 6: OPT02: SYS Constraints_AMS New.Unique Assignment

b)

Add Optimizer action to Process **Territory Assignment AMS New** and publish Action on Dashboard **New Territory Assignment** (under III. Data Input)

4/ Data Output

a)

Open module: **OUT01: New Territory Details** and add formula:

Name	Format/Summary	Formula		
New Accounts#	Number/None	'OPT01: CAL	Optimizer_AMS	
		New'.Variable	New'.Variable	
New Accounts Potential	Number/None	'OPT01: CAL	Optimizer_AMS	
		New'.Objective		

b)

Open Dashboard New Territory Assignment and Run Optimizer Action

5/ Pick Constraint to apply

Allow user input to pick Constraint to apply. It will allow more flexibility to end user, and make Optimizer testing easier.

a) Update the following Line items in module: OPT02: SYS Constraints_AMS New

Name	Format/Summary	Formula	Applies to
State	Boolean/All	'INP02: Pick Constraints'.State	ss Account:
Constraint		= FALSE OR 'OPT01: CAL	Unassigned AMS, ss
		Optimizer_AMS	Territory: AMS New
		New'.Variable <= 'OPT01: CAL	
		Optimizer_AMS New'.State	
		Constraint Staging	

Industry	Boolean/All	'INP02: Pick	ss Account:
Constraint		Constraints'.Industry = FALSE	Unassigned AMS, ss
		OR 'OPT01: CAL	Territory: AMS New
		Optimizer_AMS	
		New'.Variable <= 'OPT01: CAL	
		Optimizer_AMS	
		New'.Industry Constraint	
		Staging	
Segment	Boolean/All	'INP02: Pick	ss Account:
Constraint		Constraints'.Segment = FALSE	Unassigned AMS, ss
		OR 'OPT01: CAL	Territory: AMS New
		Optimizer_AMS	
		New'.Variable <= 'OPT01: CAL	
		Optimizer_AMS	
		New'.Segment Constraint	
		Staging	

b)

Open Dashboard New Territory Assignment and Run Optimizer Action

6/ Create your Optimizer Output module

a)

Create an Output module to host Optimizer results. The module should <u>not</u> apply to subsets, so you don't lose any data when you run the process for another POD.

Name	Functional Area	Applies to
OPT03: OUT Optimizer_AMS	Output	Accounts

b)

Create Line Items

Name	Format/Summary	Formula	
Territory	List.Territory		
Territory New	List.Territory		

c)

Import OPT01: CAL Optimizer_AMS New.Territory New into Territory New

Use Case 2: Territories replenishment

Step by Step

1/ Copy existing modules

a)

Copy **OPT01: CAL Optimizer_AMS New** and update

and the same of the same state and the same			
Name	Functional Area	Applies to	
OPT04: CAL Optimizer_AMS	Output	ss Account: AMS,	
		ss Territory: AMS	

b)

Create Line Item in **OPT04: CAL Optimizer_AMS**

Name Fo		Format/Summary	Formula	Applies to	
Current Mapping		Boolean/none	ITEM(Territory) = 'DAT01: ss Account: /		
			Account Load'.Territory	ss Territory: AMS	
Current	Mapping	number	IF Current Mapping THEN	ss Account: AMS,	
Staging			1 ELSE 0	ss Territory: AMS	

c)

Copy **OPT01: CAL Optimizer_AMS New** and update

Name	Functional Area	Applies to
OPT05: SYS Constraints_AMS	System	ss Account: AMS,
		ss Territory: AMS

d)

Update Line items

Name	Format/Summary	Formula	Applies to
POD Constraint	Boolean/All	'OPT04: CAL	ss Account: AMS, ss
		Optimizer_AMS'.Variable	Territory: AMS
		<= 'OPT04: CAL	
		Optimizer_AMS'.POD	
		Constraint Staging	
State Constraint	Boolean/All	'INP02: Pick	ss Account: AMS, ss
		Constraints'.State = FALSE	Territory: AMS
		OR <mark>'OPT04: CAL</mark>	
		Optimizer_AMS'.Variable	
		<= 'OPT04: CAL	
		Optimizer_AMS'.State	
		Constraint Staging	
Industry	Boolean/All	'INP02: Pick	ss Account: AMS, ss
Constraint		Constraints'.Industry =	Territory: AMS

		FALSE OR 'OPT04: CAL Optimizer_AMS'.Variable <= 'OPT04: CAL Optimizer_AMS'.Industry Constraint Staging	
Segment Constraint	Boolean/All	'INPO2: Pick Constraints'.Segment = FALSE OR 'OPTO4: CAL Optimizer_AMS'.Variable <= 'OPTO4: CAL Optimizer_AMS'.Segment Constraint Staging	ss Account: AMS, ss Territory: AMS
Max Account Constraint	Boolean/All	ISBLANK('INP04: Territory Details'.Segment) OR 'INP03: Territory Segment'.Max Accounts[LOOKUP: 'INP04: Territory Details'.Segment] >= 'OPT04: CAL Optimizer_AMS'.Variable	ss Territory: AMS
Unique Assignment	Boolean/All	'OPT04: CAL Optimizer_AMS'.Variable <= 1	ss Account: AMS,

e)

Create line item in **OPT05: SYS Constraints_AMS**

Name	Format/Summary	Formula	Applies to
Current Mapping	Boolean/All	'OPT04: CA	AL ss Account: AMS, ss
Constraint		Optimizer_AMS'.Currer	nt Territory: AMS
		Mapping Staging	<=
		'OPT04: C	AL
		Optimizer_AMS'.Variab	ole

2/ Create your Optimizer Option

a)

Open Actions: New Action -> Optimizer

Button Text: Territory Assignment AMS

Problem: Linear Programming

Objective: Maximize

Objective Line Item: OPT04: CAL Optimizer_AMS.Objective

Variable 1: OPT04: CAL Optimizer_AMS.Variable

Variable 1 Format: Binary (0-1)

Constraint 1: OPT05: SYS Constraints AMS.POD Constraint Constraint 2: State Constraint

Constraint 2: OPT05: SYS Constraints_AMS.State Constraint Constraint 3: OPT05: SYS Constraints_AMS.Industry Constraint Constraint 4: OPT05: SYS Constraints_AMS.Segment Constraint Constraint 5: OPT05: SYS Constraints_AMS.Max Account Constraint Constraint 6: OPT05: SYS Constraints_AMS.Unique Assignment

b)

Add Optimizer process to **Territory Assignment** and display it to Dashboard **Territory Replenishment**.

3/ Data Output

a)

Open module: **OUT01: New Territory Details** and add formula:

Name	Format/Summary	Formula		
Accounts#	Number/None	'OPT04:	CAL	
		Optimizer_AMS'.\	Optimizer_AMS'.Variable	
Accounts Potential	Number/None	'OPT04:	CAL	
		Optimizer_AMS'.	Optimizer_AMS'.Objective	

b)

Open Dashboard Territory Replenishment and Run Optimizer Action

4/ Load data into Optimizer Output module

Import OPT05: CAL Optimizer AMS.Territory into OPT03: OUT Optimizer AMS.Territory