

Optimizer Training – Use Case Example
Territory Assignment

The Anaplan Optimizer aids business planning and decision-making by solving complex problems involving
millions of combinations quickly to provide a solution that is either the most feasible, or the one that is
closest to your configured objective, such as most profitable, fastest, or cheapest.

The Anaplan Optimizer is configured through a dashboard, which allows you to make speculative ad- hoc
changes to the input parameters for immediate results. This enables the end user to create and run
optimization queries without any additional expense for IT personnel. The entire process is streamlined
because the model builder and the end user can perform all their work in Anaplan without need for an
analyst or programmer to write code for a new application, or for the end user to export Anaplan data to
an external tool, work with that tool, and then import the results into the Anaplan model.

Optimization provides the solution for a selected variable within your Anaplan model that matches your
requirement, using the values of other formula cells in your model. Optimizer makes use of linear
programming to automate applying a huge number of combinations in a ‘what-if’ analysis to calculate
either a set objective or the most feasible solution, for example maximum profit or minimum cost.

Optimizer is an entitled service, so you need to opt-in to access the feature. Your Account Executive will
assist you in structuring and formatting your enabled models.

Some problems may not result in any feasible solution (and thus no optimal solution). This can’t be
detected prior to running Optimizer but an explicit error message is displayed in such cases.

What problems can you solve with Linear Programming?

Linear programming can be used to model and analyze a wide range of business problems in planning,
routing, assignment, and scheduling. It can be used to solve planning problems, such as how to maximize
profit, or reduce cost by creating a formula or expression, giving values to the variables that influence the
problem and returning a solution.

The expression for maximizing profit or minimizing cost is known as the Objective Function, and the goal
of linear programming is to optimize this Objective Function.

Optimizer has been successfully implemented across all Lines of Business, for a variety of use cases, such
as:

Matching supply and demand, Sales Territory assignment, Investment portfolio balancing, Corporate
Long-Range Planning, HR Staffing, etc.

Use the Optimizer Solution

Optimizer is an opt-in, additional cost component within Anaplan. Optimizer must be enabled in your
workspace. Your Account Executive will help you set up Optimizer in your enabled model. The solution
will be unique to your problem and constraints, and your dashboard will reflect this. Typically, each
dashboard will feature:

• Input boxes where you can enter values appropriate to your scenario. 	
• The button on the dashboard that runs the Optimizer. 	
• Variables boxes where your solution is displayed. 	

This allows any end user with access to the Optimizer dashboard to update the input variables and run
the Optimizer as often as needed. 	

Limitations

Some complex problems may not result in any feasible or optimal solution. This can’t be detected prior to
running Optimizer. Make sure you build your dashboard in a way that alerts the end-user of inappropriate
values to minimize this possibility.

Optimizer solves only linear problems. Non-linear problems, such as a transportation scheduling problem
involving rush hour, where a non-linear (logarithmic) increase of vehicles eventually causes exponential
delays due to traffic jams, are not in scope.

Anaplan Optimizer supports the use of three comparators in expressions:

• greater than or equal to (<=) 	
• equal to (=) 	
• less than or equal to (>=) 	

All line items involved in the problem must have Time Scale and Versions set as Not Applicable. Optimizer
doesn't support Time or Versions. 	

The Optimizer calculates one variable for optimality or feasibility.

Running an Optimizer process provides the standard audit features. The model history shows who made
the changes and when the change occurred but does not show the before-and-after values.

There is no undo. The workaround is Restoring model to historical ID. Automation of an action that runs
the Optimizer is not supported by Anaplan Connect and the Anaplan API.

Performance considerations

Be aware that while the Optimizer process is running and calculating the solution, the Anaplan model is
locked so we recommend that you test in a sandbox or test environment. If a problem is so complex that
the Optimizer processing time is too long, consider separating the Optimization model from the
production model and contact Anaplan Support to share your experience.

For performance analysis, consider isolating inputs to your optimization problem (objective, variable, and
constraints) into distinct modules so that you can easily identify them.

If the use case allows, breakdown your lists into subsets and run Optimizer sequentially.

TERM DEFINITION
Objective Function The expression that guides the optimization engine while it

determines which assignments best support the business goal or
solution, such as maximum income or minimal expense.

Variable The value that represents the solution to the problem
(sometimes called the decision variable).

Variable Data Type (Variables must
have a numeric data type)

• Integer (whole number)
• Real (floating point)
• Binary (zero or one)

Input Data Values necessary for computing the solution, including any

constraints.

Constraint A limit on a value, such as its maximum, minimum, or that the
value can’t be negative.

Upper bound, Lower bound The maximum or minimal value for the variable.

Linear function When a change in value to one variable causes a directly
proportional corresponding increase (or decrease) in the value
of the other variable. Such a relationship displays as a straight
line on a graph.

Linear program The pursuit of a solution in the form of a real number, where the
Objective Function and the constraints are linear.

Integer linear program A linear program where variables are constrained to integral
values (whole numbers).

Mixed integer linear program A linear program where only some of the variables are
constrained to integral values. Other variables can be real values
(decimal numbers).

Optimality The best solution to a problem with:

Feasibility An alternative to optimality, this offers the possible solutions to
a problem with:

Time Out The number of seconds until an Optimizer action that is
processing stops and abandons progress. This value must be set
when creating an Optimizer action to prevent Optimizer running
indefinitely if a problem is unsolvable.

EXERCICE

Use Cases

Use Case#1: New Territories Assignment
Use Case#2: Territories Replenishment

Data Set

Lists:

Name Parent
Geo Total company
Region Geo
POD (Point of Delivery) Region
Territory POD

Account All
Segment All
Industry All
State All

Module

Name Functional Area Applies to
DAT01: Account Load Data Accounts
INP01: Select POD to Apply Input POD
INP02: Pick Constraints Input
INP03: Territory Segment Input Segment
INP04: Territory Details Input Territory
OUT01: Territory Details Output Territory

Use Case#1 New Territories Assignment

Step by Step

1/ Set-up Subset lists

Create Subset lists to run Optimizer sequentially and reduce processing time. Identify a way to
breakdown Account and Territory lists. In our example, we know that an Account can only be
assigned to a Territory within the same point of delivery (POD).

a)
Open module: DAT01: Account Load
Create line item: ss Account: AMS

• Format: Boolean
• Formula: 'INP01: Select POD to Apply'.Apply[lookup:POD]

b)

Open module: DAT01: Account Load
Create line item: ss Account: Unassigned AMS
Format: Boolean

• Formula: Unassigned Account AND 'ss Account: AMS'

c)
Open list: Account
Create Subsets ss Account: AMS and ss Account: Unassigned AMS
Load Subsets from DAT01: Account Load

d)
Open module: INP04: Territory Details
Create line item: ss Territory: POD

• Format: Boolean
• Formula: 'INP01: Select POD to Apply'.Apply[lookup:POD]

e)

Open module: INP04: Territory Details
Create line item: ss Territory: AMS New

• Format: Boolean
• Formula: New Territory AND 'ss Territory: AMS’

f)

Open list: Territory
Create Subsets Territory: AMS and ss Territory: AMS New
Load Subsets from INP04: Territory Details

We will use the Subset ss Account: AMS and Territory: AMS for existing Territories replenishment
and ss Account: Unassigned AMS and ss Territory: AMS New to assign accounts to new
Territories.

g)
Open Actions: create 2 processes, Territory Assignment AMS and Territory Assignment AMS
New. Add the 2 Subset creation actions to the 2 processes.

2/ Create your Optimizer Calculation module (New Territories only)

a)
Create a module

Name Functional Area Applies to
OPT01: CAL Optimizer_AMS
New

Calcul ss Account: Unassigned AMS, ss Territory:
AMS New

b)

Create Line items
Name Format Formula
Variable Number
Objective Number Variable*'DAT01: Account Load'.Account

Potential
POD Constraint Staging Number IF 'INP04: Territory Details'.POD = 'DAT01:

Account Load'.POD THEN 1 ELSE 0
State Constraint Staging Number IF ISBLANK('INP04: Territory Details'.State)

OR 'INP04: Territory Details'.State =
'DAT01: Account Load'.State THEN 1 ELSE 0

Industry Constraint Staging Number IF ISBLANK('INP04: Territory
Details'.Industry) OR 'INP04: Territory
Details'.Industry = 'DAT01: Account
Load'.Industry THEN 1 ELSE 0

Segment Constraint Staging Number IF ISBLANK('INP04: Territory
Details'.Segment) OR 'INP04: Territory
Details'.Segment = 'DAT01: Account
Load'.Segment THEN 1 ELSE 0

Territory New List.Territory IF Variable > 0 THEN ITEM(Territory) ELSE
BLANK

3/ Create your Optimizer Constraint module (New Territories only)

a)
Create a module

Name Functional Area Applies to
OPT02: SYS Constraints_AMS
New

System ss Account: Unassigned AMS, ss
Territory: AMS New

b)

Create Line items
Name Format/Summary Formula Applies to
POD Constraint Boolean/All 'OPT01: CAL Optimizer_AMS

New'.Variable <= 'OPT01: CAL
Optimizer_AMS New'.POD
Constraint Staging

ss Account:
Unassigned AMS, ss
Territory: AMS New

State
Constraint

Boolean/All 'OPT01: CAL Optimizer_AMS
New'.Variable <= 'OPT01: CAL
Optimizer_AMS New'.State
Constraint Staging

ss Account:
Unassigned AMS, ss
Territory: AMS New

Industry
Constraint

Boolean/All 'OPT01: CAL Optimizer_AMS
New'.Variable <= 'OPT01: CAL
Optimizer_AMS
New'.Industry Constraint
Staging

ss Account:
Unassigned AMS, ss
Territory: AMS New

Segment
Constraint

Boolean/All 'OPT01: CAL Optimizer_AMS
New'.Variable <= 'OPT01: CAL
Optimizer_AMS
New'.Segment Constraint
Staging

ss Account:
Unassigned AMS, ss
Territory: AMS New

Max Account
Constraint

Boolean/All ISBLANK('INP04: Territory
Details'.Segment) OR 'INP03:
Territory Segment'.Max
Accounts[LOOKUP: 'INP04:
Territory Details'.Segment] >=
'OPT01: CAL Optimizer_AMS
New'.Variable

ss Territory: AMS
New

Unique
Assignment

Boolean/All 'OPT01: CAL Optimizer_AMS
New'.Variable <= 1

ss Account:
Unassigned AMS

3/ Create your Optimizer Option

a)
Open Actions: New Action -> Optimizer

Button Text: Territory Assignment AMS New
Problem: Linear Programming
Objective: Maximize

Objective Line Item: OPT01: CAL Optimizer_AMS New.Objective
Variable 1: OPT01: CAL Optimizer_AMS New.Variable
Variable 1 Format: Binary (0-1)
Constraint 1: OPT02: SYS Constraints_AMS New.POD Constraint
Constraint 2: OPT02: SYS Constraints_AMS New.State Constraint
Constraint 3: OPT02: SYS Constraints_AMS New.Industry Constraint
Constraint 4: OPT02: SYS Constraints_AMS New.Segment Constraint
Constraint 5: OPT02: SYS Constraints_AMS New.Max Account Constraint
Constraint 6: OPT02: SYS Constraints_AMS New.Unique Assignment

b)
Add Optimizer action to Process Territory Assignment AMS New and publish Action on
Dashboard New Territory Assignment (under III. Data Input)

4/ Data Output

a)
Open module: OUT01: New Territory Details and add formula:

Name Format/Summary Formula
New Accounts# Number/None 'OPT01: CAL Optimizer_AMS

New'.Variable
New Accounts Potential Number/None 'OPT01: CAL Optimizer_AMS

New'.Objective

b)
Open Dashboard New Territory Assignment and Run Optimizer Action

5/ Pick Constraint to apply

Allow user input to pick Constraint to apply. It will allow more flexibility to end user, and make
Optimizer testing easier.

a)
Update the following Line items in module: OPT02: SYS Constraints_AMS New

Name Format/Summary Formula Applies to
State
Constraint

Boolean/All 'INP02: Pick Constraints'.State
= FALSE OR 'OPT01: CAL
Optimizer_AMS
New'.Variable <= 'OPT01: CAL
Optimizer_AMS New'.State
Constraint Staging

ss Account:
Unassigned AMS, ss
Territory: AMS New

Industry
Constraint

Boolean/All 'INP02: Pick
Constraints'.Industry = FALSE
OR 'OPT01: CAL
Optimizer_AMS
New'.Variable <= 'OPT01: CAL
Optimizer_AMS
New'.Industry Constraint
Staging

ss Account:
Unassigned AMS, ss
Territory: AMS New

Segment
Constraint

Boolean/All 'INP02: Pick
Constraints'.Segment = FALSE
OR 'OPT01: CAL
Optimizer_AMS
New'.Variable <= 'OPT01: CAL
Optimizer_AMS
New'.Segment Constraint
Staging

ss Account:
Unassigned AMS, ss
Territory: AMS New

b)

Open Dashboard New Territory Assignment and Run Optimizer Action

6/ Create your Optimizer Output module

a)
Create an Output module to host Optimizer results. The module should not apply to subsets, so
you don’t lose any data when you run the process for another POD.

Name Functional Area Applies to
OPT03: OUT Optimizer_AMS Output Accounts

b)

Create Line Items
Name Format/Summary Formula
Territory List.Territory
Territory New List.Territory

c)

Import OPT01: CAL Optimizer_AMS New.Territory New into Territory New

Use Case 2: Territories replenishment

Step by Step

1/ Copy existing modules

a)
Copy OPT01: CAL Optimizer_AMS New and update

Name Functional Area Applies to
OPT04: CAL Optimizer_AMS Output ss Account: AMS,

ss Territory: AMS

b)
Create Line Item in OPT04: CAL Optimizer_AMS

Name Format/Summary Formula Applies to
Current Mapping Boolean/none ITEM(Territory) = 'DAT01:

Account Load'.Territory
ss Account: AMS,
ss Territory: AMS

Current Mapping
Staging

number IF Current Mapping THEN
1 ELSE 0

ss Account: AMS,
ss Territory: AMS

c)

Copy OPT01: CAL Optimizer_AMS New and update
Name Functional Area Applies to
OPT05: SYS Constraints_AMS System ss Account: AMS,

ss Territory: AMS

d)
Update Line items

Name Format/Summary Formula Applies to
POD Constraint Boolean/All 'OPT04: CAL

Optimizer_AMS'.Variable
<= 'OPT04: CAL
Optimizer_AMS'.POD
Constraint Staging

ss Account: AMS, ss
Territory: AMS

State Constraint Boolean/All 'INP02: Pick
Constraints'.State = FALSE
OR 'OPT04: CAL
Optimizer_AMS'.Variable
<= 'OPT04: CAL
Optimizer_AMS'.State
Constraint Staging

ss Account: AMS, ss
Territory: AMS

Industry
Constraint

Boolean/All 'INP02: Pick
Constraints'.Industry =

ss Account: AMS, ss
Territory: AMS

FALSE OR 'OPT04: CAL
Optimizer_AMS'.Variable
<= 'OPT04: CAL
Optimizer_AMS'.Industry
Constraint Staging

Segment
Constraint

Boolean/All 'INP02: Pick
Constraints'.Segment =
FALSE OR 'OPT04: CAL
Optimizer_AMS'.Variable
<= 'OPT04: CAL
Optimizer_AMS'.Segment
Constraint Staging

ss Account: AMS, ss
Territory: AMS

Max Account
Constraint

Boolean/All ISBLANK('INP04: Territory
Details'.Segment) OR
'INP03: Territory
Segment'.Max
Accounts[LOOKUP: 'INP04:
Territory Details'.Segment]
>= 'OPT04: CAL
Optimizer_AMS'.Variable

ss Territory: AMS

Unique
Assignment

Boolean/All 'OPT04: CAL
Optimizer_AMS'.Variable
<= 1

ss Account: AMS,

e)

Create line item in OPT05: SYS Constraints_AMS
Name Format/Summary Formula Applies to
Current Mapping
Constraint

Boolean/All 'OPT04: CAL
Optimizer_AMS'.Current
Mapping Staging <=
'OPT04: CAL
Optimizer_AMS'.Variable

ss Account: AMS, ss
Territory: AMS

2/ Create your Optimizer Option

a)
Open Actions: New Action -> Optimizer

Button Text: Territory Assignment AMS
Problem: Linear Programming
Objective: Maximize
Objective Line Item: OPT04: CAL Optimizer_AMS.Objective
Variable 1: OPT04: CAL Optimizer_AMS.Variable

Variable 1 Format: Binary (0-1)
Constraint 1: OPT05: SYS Constraints_AMS.POD Constraint Constraint 2: State Constraint
Constraint 2: OPT05: SYS Constraints_AMS.State Constraint
Constraint 3: OPT05: SYS Constraints_AMS.Industry Constraint
Constraint 4: OPT05: SYS Constraints_AMS.Segment Constraint
Constraint 5: OPT05: SYS Constraints_AMS.Max Account Constraint
Constraint 6: OPT05: SYS Constraints_AMS.Unique Assignment

b)
Add Optimizer process to Territory Assignment and display it to Dashboard Territory
Replenishment.

3/ Data Output

a)
Open module: OUT01: New Territory Details and add formula:

Name Format/Summary Formula
Accounts# Number/None 'OPT04: CAL

Optimizer_AMS'.Variable
Accounts Potential Number/None 'OPT04: CAL

Optimizer_AMS'.Objective

b)
Open Dashboard Territory Replenishment and Run Optimizer Action

4/ Load data into Optimizer Output module

Import OPT05: CAL Optimizer_AMS.Territory into OPT03: OUT Optimizer_AMS.Territory

