
Disclaimer
The following is intended to outline our general product direction. It is
intended for information purposes only, and may not be incorporated into
any contract. It is not a commitment to deliver any material, code, or
functionality, and should not be relied upon in making purchasing decision.
The development, release, and timing of any features or functionality
described for Anaplan’s products remains at the sole discretion of Anaplan.

Introduction
Value

Availability
Deployment

Sparsity & Performance
Scale
Q&A

What is Anaplan Polaris?

What is Polaris?

• Polaris is a new underlying storage and calculation engine for
Anaplan. It is a natively sparse engine – designed as a general
purpose planning and modelling engine for naturally sparse
business problems.

• It will work side by side with the existing ‘Classic’ engine on a
workspace by workspace basis. A workspace will either be a ‘Classic
Workspace’ or a ‘Polaris Workspace’.

• The main advantages of a natively sparse engine is that it allows much
higher dimensionality and granularity for sparse business problems.

Anaplan Polaris

• The same Anaplan modelling interface you
currently use…

• With a new underlying storage and calculation
engine…

• Allowing massive dimensionality – more
dimensions and / or more items in a dimension

What value does Anaplan
Polaris bring?

ü Solve business problems by
modeling data in its natural state

ü Analyze multiple intersections of
highly sparse data for more
granular insight

ü Expand data dimensionality of list
items to plan and scale with
business

ü Empower business users to slice
and dice data for in-depth
analysis and reporting

ü Eliminate the need to
concatenate or/and flatten data
structures, hierarchies, split
models (by regions, for example)
for an intuitive user experience

ü CAPEX: Consolidate the
software estate by reducing or
eliminating multiple planning and
analysis tools

ü OPEX: Reduce the extra
resources and time needed to
manage and maintain multiple
tools

Broaden and deepen
the scope of

addressable business
problems

With Anaplan Polaris, businesses can...

Let business users analyze
and report at scale,

unassisted, intuitively and
easily

Lower total cost of
ownership (TCO) in
a unified platform

When will Polaris be available and
what functionality is supported ?

Polaris Release Availability

LA – Phase I

• Open to EA customers
• Requires an Anaplan Solution

Architect to support the project
• Supported by the cross

functional Polaris launch team

LA – Phase II

• Based on assessment of the
suitability of the use case

• Requires an Anaplan Solution
Architect to support the project

• Supported by the cross
functional Polaris launch team

GA

• Available for all
customers

Anaplan Confidential Information - Tentative Roadmap, all dates subject to change

Functionality Support

Not supported on release

• Drill Down
• Time Ranges
• RANK / RANKCUMULATE
• Tabular single column exports
• None supported functions
• BYOK
• Breakback
• Optimizer

In 6 to 12 months 12 months plus

Anaplan Confidential Information - Tentative Roadmap, all dates subject to change

Notes:
* Details for non-supported calculation functions here

https://help.anaplan.com/4c7a3bda-f406-49d5-a3ba-d54524fc0c22-Calculation-function-differences-between-engines

How is Polaris Deployed?

How is Polaris deployed.

• When created, a Workspace is set to be either ‘Classic’ or ‘Polaris’

• Once created, the type of a workspace cannot be changed.

• To create a Polaris model, you simply create a new model in the Polaris workspace.

• It is possible to import/export between models in different types of workspace

• It is possible to copy Model Structure (via a Model Import) – provided that only features
supported in Polaris are used in the source model

Performance, Populated Cells,
and Sparsity

Performance

• The performance of a sparse engine is based on how the data is stored and organized
and which results are calculated.

• Polaris performance is based on only storing combinations that hold data and only
calculating combinations that may be relevant and generate results.

• To understand this, we need to explain
• Sparsity & Density
• Default Values
• Calculation Complexity

Naming and Terminology

• Sparsity / Density – is the ratio of populated cells to totally addressable cells. A Sparse
model/module/line item is one where the vast majority of cells are not populated.

• Populated Cells – A populated cell is one that does not contain the Default Value.

• Default Value – The default value is currently fixed for each data type:
• Numeric: Zero
• Boolean: False
• List Item: [Blank]
• Date: [Blank]
• Time Period: [Blank]
• Text: “” [An empty string]

Notes:
* Polaris has exactly the same semantics as the Classic engine when it comes to Numerics / Null.

A Sparse Engine vs. a
Dense Engine

• In a Sparse Engine, only data
values that are populated are
stored. This is much more efficient
for ‘naturally sparse’ data sets.

In a Dense Engine, like current
Anaplan, memory is reserved for
all possible data values in a
coordinate space.

A B C D E F

Bob 56 54 32 3

Tom 34 34

Sam 34 43 77

Eve 83 43 33

Iris 98 54

14 Cells with
non-zero
numbers stored
in a Sparse
Engine

All 30 Cells
stored in a
Dense Engine

The Memory required for
each cell is also different

• For a sparse engine, for every
numeric Cell stored, approximately
24 bytes is required.

In a Dense Engine, like current
Anaplan, each numeric cell requires 8
bytes.

A B C D E F

Bob 56 54 32 3

Tom 34 34

Sam 34 43 77

Eve 83 43 33

Iris 98 54

14 Cells with
Values x 24
bytes = 336
bytes in a
Sparse Engine

30 cells x 8
bytes = 240
bytes in a
dense engine

One to One Calculations

Apple £1

Banana £2

Cherry £1.50

Date £3

Elderberry £0.50

Jan Feb Mar
Apple 1

Banana 3

Cherry

Date

Elderberry 4

Jan Feb Mar
Apple £1

Banana £6

Cherry

Date

Elderberry £2

• One-to-One formulas are where the calculation can be driven from one of the source line
items in a way so that there will only ever be the same or fewer populated cells in the
target line item than the sum of the input line items. A simple example is a multiplication
(as we know that anything x zero is zero and therefore doesn’t need to be calculated).

Revenue = Units * Price

number Price[Product]number Units[Product, Time]number Revenue[Product, Time]

‘One-To-Many’ Calculations

• ‘One-To-Many’ Calculations are ones where the output can have more than the sum of
populated cells in the inputs, but not every cell in the output has to be calculated. In a
very simple example, if a Month dimensioned line item references a Quarter dimensioned
line item, then the quarter value will be spread across the respective months. This will
result in a greater number of populated cells in the target than the source.

Q1
Apple 4

Banana 5

Cherry

Date 1

Elderberry

Jan Feb Mar
Apple 4 4 4

Banana 5 5 5

Cherry

Date 1 1 1

Elderberry

number Units1[Product, Time]number UnitsTotal[Product, Time]

UnitsMonth = UnitsQuarter

‘All Cells’ Calculations

• ‘ALL Cells’ formulas are where the calculation cannot be driven from any of the line item’s
populated cells. The only way to perform this type of calculation is to iterate over every
cell in the target. A simple example is an Addition of a literal. In this case, every cell must
be touched in order to calculate the result. Note that the result is not 100% Dense, but the
calculation still has to iterate over every cell.

Jan Feb Mar
Apple -1

Banana 3

Cherry -1

Date -4 5

Elderberry 4 -1

Jan Feb Mar
Apple 1 1

Banana 1 1 4

Cherry 1 1

Date -3 1 6

Elderberry 1 5

number Units1[Product, Time]number UnitsTotal[Product, Time]

UnitsTotal = Units1 + 1

+ 1

Polaris Calculation Complexity

Formulas can be divided into 3 categories of Calculation Efficiency, depending on how they
can be ‘driven’

• One-to-One – This is where the output will be As Sparse as the sources. This type of
calculation maintains sparsity, and is the most efficient category of calculation type.

• One-to-Many - This is where the output can be More Dense than the sources, but not
every target cell can be populated. One-to-Many Calcs can be described using a ‘Fan-
Out Factor’ which describes the multiple of possible cells that can be populated.

• ALL Cells – This is where every cell has to be calculated 100% Densely, and every cell
could be populated. This is the least efficient type of calculation.

Scale Limitations in Polaris

Scale Limits in Polaris

There are two major scale constraints in Polaris:

1. The model must fit within a workspace. Just like Classic Anaplan, Polaris holds the
whole model in memory within one running server. Polaris can make use of
Hypermodels, but the model can’t be larger than the workspace size.

2. The theoretical limit for a line item is 264 cells. This is approximately 18 quintillion cells
(18 million trillion). The limit will vary depending on the shape of the dimensions, but the
absolute maximum is 264 cells PER LINE ITEM.

The practical limit will always be less than this due to the representation of the dimension
index. Nonetheless, a line item in Polaris can have trillions of addressable cells.

Q A

Effect of Density on Memory Use for Sparse vs Dense Engines

In a Dense engine, each numeric value
requires ~8 bytes for storage. As the whole
hyperspace is stored – the total storage
requirement does not change with density.

In a Sparse engine, each numeric value
requires ~24 bytes for storage. Only the
populated values are stored.

This means that for a given model, if the
overall density is >33%, a dense engine is
more memory efficient, and if <33%, a
Sparse engine is more efficient.

0
200
400
600
800

1000
1200
1400
1600

0% 10% 20% 30% 40% 50%

Memory Usage at varying Overall Density
(GB Storage against Density)

Sparse GB Dense GB

Above chart showing memory usage for
Inventory Planning example against varying
overall density for sparse and dense engines.

Aggregate Cells are usually not as Sparse as Primary Cells

A B C D E F

Bob 56 54 32 3

Tom 34 34

Sam 34 43 77

Eve 83 43 33

Iris 98 54

Men

Women

ABC DEF

A B C D E F

Men 56 88 34 32 3

Women 181 34 43 77 97 33

ABC DEF
Bob 110 35

Tom 34 34

Sam 77 77

Eve 83 76

Iris 98 54

ABC DEF

Men 144 69

Women 258 207

Primary Cells
47% dense

100%
Dense

92%
Dense

100%
Dense

Primary
Cells

Aggregat
e Cells

Total
Cells

Number
of Cells

30 26 56

Populate
d

14 25 39

Density 47% 96% 70%

Adding 1 level of rollup to each
dimension in this example, moves
the overall density from 47% to
70%

The degree to which numbers of levels in hierarchies affect the
overall density (and therefore size) of a dataspace is heavily
dependent on the distribution of the data.

5 2 2

6

9 3 2

2

3

2

5

2

6

9

The same number of
primary data cells
can lead to very
different numbers of
populated roll-ups.

