
Formula Optimization
A guide on identifying and optimizing Anaplan formulas



Mark Warren
Manager – Operational Excellence Group



“ 3 easy steps to follow if you 
want to improve your 
model performance”



Calculate once and 
refer many times

• Avoid repetition!
• Why calculate the 

same thing in multiple 
places when we can 
avoid it

• Use System modules –
learn how to DISCO

Calculate at lowest 
cell count possible

• Why calculate more 
than we need to?

• Calculate over just the 
dimension the formula 
applies to

• Break up formulas to 
calculate at the right 
cell count for each part

Test as you go!

• Spotting poor 
performance early 
makes it easier to 
address

• Test different ways of 
achieving the same 
goal

• Test and prove 
optimizations

Golden Rules



Calculate once and refer many times

Repetition

• Where it occurs
• Generally find it within the same module
• Between similar modules and functional areas
• Simple common elements like list items and dates
• Conditional checks are a common area

• Why is it bad?
• Because it is a calculation we can avoid
• They add up, increasing overall calculation time
• Can lead to more recalculation



Calculate once and refer many times

Common example of repeated functions
• ITEM(X)
• NAME(ITEM(X))
• CODE(ITEM(X))
• PARENT(ITEM(X))
• START()
• END()
• ITEM(Time) = TIME.'Current Period’
• CURRENTPERIODSTART() < START()
• Boolean checks in IF statements



Calculate once and refer many times



Calculate once and refer many times
Use a Time Management Module

Cell Count = 105
vs

280,908 x 3
= 842,72499.9%

reduction in 
calculated 
cells



Calculate at lowest cell count possible

A common example is adding text together to form a unique code

In this case we are adding a Company code to Product code with an underscore separator

There are two text additions here (two &’s) done at a combined cell count of 128,895,624



Calculate at lowest cell count possible
• Product has 3531 items
• Company has 1014 items

So we do one text addition at the lowest cell count possible with no timescale

Note that both are done in System modules for each list (DISCO)

The main formula is now



Calculate at lowest cell count possible

We can take it a step further here…
The formula does not apply to time

Doing the calculation without a timescale reduces cell count to 3,580,434



Calculate at lowest cell count possible

• The first example calculation took 5.68 sec 
• (two text additions at 128,895,624 cells)

• The last example took 0.52 sec 
• (one text addition at 3,580,434 cells)

• 91% reduction in duration



Demo

1. Identifying large formulas

2. How to edit large formulas

3. Splitting up formulas to reduce repetition and complexity

4. Testing the optimizations

5. Performance analysis



Demo

(IF ISNOTBLANK(LEFT(String, FIND("_", String, 1) - 1)) THEN LEFT(String, FIND("_", String, 1) - 1) ELSE String) & (IF LENGTH(MID(String, FIND("_", 
String, 1) + 1, IF FIND("_", String, LENGTH(LEFT(String, FIND("_", String, 1) + 1))) - LENGTH(LEFT(String, FIND("_", String, 1))) < 0 THEN 1000 ELSE 
FIND("_", String, LENGTH(LEFT(String, FIND("_", String, 1) + 1))) - LENGTH(LEFT(String, FIND("_", String, 1))))) = 0 THEN BLANK ELSE " " & 
MID(String, FIND("_", String, 1) + 1, IF FIND("_", String, LENGTH(LEFT(String, FIND("_", String, 1) + 1))) - LENGTH(LEFT(String, FIND("_", String, 1))) < 
0 THEN 1000 ELSE FIND("_", String, LENGTH(LEFT(String, FIND("_", String, 1) + 1))) - LENGTH(LEFT(String, FIND("_", String, 1))) - 1)) & (IF 
MID(String, LENGTH((IF ISNOTBLANK(LEFT(String, FIND("_", String, 1) - 1)) THEN LEFT(String, FIND("_", String, 1) - 1) ELSE String) & IF 
LENGTH(MID(String, FIND("_", String, 1) + 1, IF FIND("_", String, LENGTH(LEFT(String, FIND("_", String, 1) + 1))) - LENGTH(LEFT(String, FIND("_", 
String, 1))) < 0 THEN 1000 ELSE FIND("_", String, LENGTH(LEFT(String, FIND("_", String, 1) + 1))) - LENGTH(LEFT(String, FIND("_", String, 1))))) = 0 
THEN BLANK ELSE " " & MID(String, FIND("_", String, 1) + 1, IF FIND("_", String, LENGTH(LEFT(String, FIND("_", String, 1) + 1))) -
LENGTH(LEFT(String, FIND("_", String, 1))) < 0 THEN 1000 ELSE FIND("_", String, LENGTH(LEFT(String, FIND("_", String, 1) + 1))) -
LENGTH(LEFT(String, FIND("_", String, 1))) - 1)) + 2, IF FIND("_", String, LENGTH((IF ISNOTBLANK(LEFT(String, FIND("_", String, 1) - 1)) THEN 
LEFT(String, FIND("_", String, 1) - 1) ELSE String) & IF LENGTH(MID(String, FIND("_", String, 1) + 1, IF FIND("_", String, LENGTH(LEFT(String, 
FIND("_", String, 1) + 1))) - LENGTH(LEFT(String, FIND("_", String, 1))) < 0 THEN 1000 ELSE FIND("_", String, LENGTH(LEFT(String, FIND("_", String, 
1) + 1))) - LENGTH(LEFT(String, FIND("_", String, 1))))) = 0 THEN BLANK ELSE " " & MID(String, FIND("_", String, 1) + 1, IF FIND("_", String, 
LENGTH(LEFT(String, FIND("_", String, 1) + 1))) - LENGTH(LEFT(String, FIND("_", String, 1))) < 0 THEN 1000 ELSE FIND("_", String, 
LENGTH(LEFT(String, FIND("_", String, 1) + 1))) - LENGTH(LEFT(String, FIND("_", String, 1))) - 1)) + 2) - (LENGTH((IF ISNOTBLANK(LEFT(String, 
FIND("_", String, 1) - 1)) THEN LEFT(String, FIND("_", String, 1) - 1) ELSE String) & IF LENGTH(MID(String, FIND("_", String, 1) + 1, IF FIND("_", String, 
LENGTH(LEFT(String, FIND("_", String, 1) + 1))) - LENGTH(LEFT(String, FIND("_", String, 1))) < 0 THEN 1000 ELSE FIND("_", String, 
LENGTH(LEFT(String, FIND("_", String, 1) + 1))) - LENGTH(LEFT(String, FIND("_", String, 1))))) = 0 THEN BLANK ELSE " " & MID(String, FIND("_", 
String, 1) + 1, IF FIND("_", String, LENGTH(LEFT(String, FIND("_", String, 1) + 1))) - LENGTH(LEFT(String, FIND("_", String, 1))) < 0 THEN 1000 ELSE 
FIND("_", String, LENGTH(LEFT(String, FIND("_", String, 1) + 1))) - LENGTH(LEFT(String, FIND("_", String, 1))) - 1)) + 2) <= 0 THEN 1000000 ELSE 
FIND("_", String, LENGTH((IF ISNOTBLANK(LEFT(String, FIND("_", String, 1) - 1)) THEN LEFT(String, FIND("_", String, 1) - 1) ELSE String) & IF 
LENGTH(MID(String, FIND("_", String, 1) + 1, IF FIND("_", String, LENGTH(LEFT(String, FIND("_", String, 1) + 1))) - LENGTH(LEFT(String, FIND("_", 
String, 1))) < 0 THEN 1000 ELSE FIND("_", String, LENGTH(LEFT(String, FIND("_", String, 1) + 1))) - LENGTH(LEFT(String, FIND("_", String, 1))))) = 0 
THEN BLANK ELSE " " & MID(String, FIND("_", String, 1) + 1, IF FIND("_", Str…

• Taking a complex formula (small part shown here 3,504 characters of 273,668)



Demo
• Finding and highlighting repeated parts in the text editor

• Using the Find or Count function od the editor to look for part with most repetitions
• Replacing that part with a reference to a new line item named A



Demo

• Repeating until all repetition is removed…



Demo

• Calculation analysis – comparison of calculation times before and after
• Test by comparing formulas and how long did it take before and after



Key takeaways

• Large performance gains can be made

• Using a text editor can aid in finding repetition

• The gain in model size can be worth it for the improved performance

• Difficult to write an optimized formula – testing and optimising after build is key



Complexity



Complexity

• Where it occurs
• Multiple functions in one line item
• Nested IF statements
• Copy and pasted or Excel formula generation

• Why is it bad?
• Large calculations
• Frequent recalculation
• Difficult logic to understand & maintain



Complexity
User makes a cell change

Products.Purchase Price[SUM: Region] + Marketing.Total Costs[SUM: Region]
/ Sales.Total Sales[LOOKUP: Region] * (Currency Modifier.USD / 1000)

In this scenario all four functions will recalculate if any reference changes 

Calculation Time: 30,320 ms + 29,780 ms + 21,320 ms + 4560 ms = 85,980 ms



Complexity

Functions split out to their own line items
A = Products.Purchase Price[SUM: Region]
B = Marketing.Total Costs[SUM: Region]
C = Sales.Total Sales[LOOKUP: Region]
D = (Currency Modifier.USD / 1000)

If B, Marketing Costs, is the only reference affected by the changes then only this calculates 
A + B / C * D 

Calculation Time: 1 ms + 29,780 ms + 1 ms + 1 ms = 29,783 ms

Giving us a 65% reduction in calculation time!



Complexity

• Export the line items from settings

• Create a column in the export to check formula length 
using: =LEN(B3)

• Anything longer than 500 to 1000 characters is worth 
looking at

• Combine with cell count to work out which line items to 
focus on first



Text Concatenation



Modification Performance 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Number+1

Str ing & "."

NOT Boolean

List

Date+1

Period+1

Simple Modification - 100m cells, time in ms



Memory Use

0 10 20 30 40 50 60 70

Number

String

Boolean

List

Date

Period

Actual Memory Use Cell Size



Finding text concatenation

Excel formula for & count:
=LEN(B3)-LEN(SUBSTITUTE(B3,"&",""))

• Combine with formula length and cell count to decide which line items to focus on first



Demo

1. Identifying text concatenation formulas

2. Splitting formulas to calculate at lowest cell count possible

3. Testing the optimization

4. Performance analysis



Demo

• Breaking down formula (at each applies to)
• "CODE1:" & CODE(ITEM('500')) & "_" & "CODE2:" & CODE(ITEM('200')) & "_" & 

"DATE:" & NAME(ITEM(Time))

• New line items with lowest cell counts possible



Demo

• Test optimisation – compare original and optimised
• Filter out any items that don’t match – should be none



Demo

• Performance analysis



Key takeaways

• Text formula performance is poor

• Combine as many text parts as possible

• Split apart by each ‘applies to’

• Use System modules where possible



Session takeaway

• Following the golden rules will lead to improvements
• Use Excel to analyse blueprints
• Learn to use the text editor to break down formulas

Key factors in reducing formula complexity
• Calculate once and refer many times
• Calculate at lowest cell count possible

Don’t forget
• Test as you go!



Further reading

• https://community.anaplan.com/t5/Best-Practices/Reduce-Calculations-for-Better-
Performance/ta-p/33667

• https://community.anaplan.com/t5/Best-Practices/Formula-Optimization-in-Anaplan/ta-
p/41663

• https://community.anaplan.com/t5/Best-Practices/Formula-Structure-for-Performance/ta-
p/33177

• PLANS - https://community.anaplan.com/t5/Best-Practices/PLANS-This-Is-How-We-
Model/ta-p/33530

• DISCO - https://community.anaplan.com/t5/Best-Practices/Best-Practices-for-Module-
Design/ta-p/35993

• Planual - https://community.anaplan.com/t5/Best-Practices/The-Planual/ta-p/49773

• My text editor https://atom.io/

https://community.anaplan.com/t5/Best-Practices/Reduce-Calculations-for-Better-Performance/ta-p/33667
https://community.anaplan.com/t5/Best-Practices/Formula-Optimization-in-Anaplan/ta-p/41663
https://community.anaplan.com/t5/Best-Practices/Formula-Structure-for-Performance/ta-p/33177
https://community.anaplan.com/t5/Best-Practices/PLANS-This-Is-How-We-Model/ta-p/33530
https://community.anaplan.com/t5/Best-Practices/Best-Practices-for-Module-Design/ta-p/35993
https://community.anaplan.com/t5/Best-Practices/The-Planual/ta-p/49773
https://atom.io/


Exercise 1

• An empty model with the complex formula
• Try to recreate the demo by finding repeated elements in a text editor and populating the 

model
• Remember to add in a line item to compare the results



Exercise 2

• Add the line items needed to separate out the text concatenation
• Remember to change dimensions to get lowest cell counts
• Use a line item to compare the two formulas



Thank you!


