- A calculator company produces a scientific calculator and a graphing calculator. Long-term projections indicate an expected demand of at least 100 scientific and $\mathbf{8 0}$ graphing calculators each day. Because of limitations on production capacity, no more than 200 scientific and $\mathbf{1 7 0}$ graphing calculators can be made daily. To satisfy a shipping contract, a total of at least 200 calculators much be shipped each day.
- If each scientific calculator sold results in a \$2 loss, but each graphing calculator produces a $\$ 5$ profit, how many of each type should be made daily to maximize net profits? The question asks for the optimal number of calculators, so my variables will stand for that: x : number of scientific calculators produced y : number of graphing calculators produced

Since they can't produce negative numbers of calculators, I have the two constraints, $x \geq 0$ and $y \geq 0$. But in this case, I can ignore these constraints, because I already have that $x \geq 100$ and $y \geq 80$. The exercise also gives maximums: $x \leq 200$ and $y \leq 170$. The minimum shipping requirement gives me $x+y \geq 200$; in other words, $y \geq-x+200$. The profit relation will be my optimization equation: $P=-2 x+5 y$. So the entire system is:

- $P=-2 x+5 y$, subject to:

$$
\begin{aligned}
& 100 \leq x \leq 200 \\
& 80 \leq y \leq 170
\end{aligned}
$$

$$
y \geq-x+200
$$

The feasibility region graphs as:

When you test the corner points at $(100,170),(200,170),(200,80),(120,80)$, and $(100,100)$, you should obtain the maximum value of $P=650$ at $(x, y)=(100,170)$. That is, the solution is " 100 scientific calculators and 170 graphing calculators".

