Anton Lagergren
Enee 245 -- Lab #10

Lab Report #10

Anton Lagergren
Enee 245 -- Lab #10

OBJECTIVE: The purpose of this lab was to construct a circuit which acted as a digital calculator.
More specifically, the assignment was to create a circuit which was able to take two 8-bit numbers
as input and have one of the basic arithmetic operations (addition, subtraction, division,
multiplication) act upon those two numbers. The requirements stated that the output must be
displayed on 7-segment displays located on the Altera FPGA board.

DESIGN: The general procedure for constructing the circuit is given by the following steps:

1. Black Box — The very first thing our group did was to draw a black box of the calculator. This
showed simply the inputs and outputs from the board level. This is what gave us a basis to
begin brainstorming the inside or the “brains” of the calculator. (Fig e-1)

2. Brainstorming and the “Data Flow Model” — This part of the project involved
conceptualizing the process of turning input into output. It was realized that defining this was
crucial at the beginning because it would define how the block diagram would turn out.

For example, we decided the way we wanted to calculator to perform was to calculate all
arithmetic operations simultaneously, and then the user selected which information to display.
Our block diagram may have turned out differently if we decided we wanted each operation
selected first, that way only one operations output is ever being calculated at a time. This is
what we mean when we say “Data Flow Model”. (Fig e-2)

3. Block Diagram — Once the “Data Flow Model” was tested and confirmed to work for one
arithmetic operation (addition), the same procedure was carried out on the remaining three
operations as well as creating other modules need to complete the design. (Fig e-3)

4. Adder/Subtractor / Multiplier / Divider Module’s — Each of these modules was implemented
by using the built in arithmetic operators (+, -, *, /) available in Quartus. (Fig e-4)

5. Decoder Module’s — Each of the decoders operated on the same similar principle with only
minor specifics being altered for each arithmetic operation. Examples of differences in code
between modules were the number of bits accepted for the input, and, the output configuration
for each Hex display. (Fig e-5) Note* -- Because the code is so lengthy, to save space, only
the adder decoder is shown in the report, but all the decoders operate on the same principle.

6. Encoder Module — This module takes in input from the user through the use of the push keys
on the board and translated it into information used by the multiplexers to select which
operations output to push through to the 7-segment displays. The encoder operates on the same
principle as the decoder, it just does it in the reverse fashion. (Fig e-6)

7. Multiplexer Module’s — These modules were all identical. They were used to accept
information from the decoders, and also to pass information on the HEX displays once a
selection was made by the user through the use of the push keys. (Fig e-7)

Anton Lagergren
Enee 245 -- Lab #10

8. Operation Selector Module — This is the module which houses all the “component modules”
of the calculator, and is the module where all the “component modules” are wire to one another
in order to create the functionality of a calculator. The Operation Selector module can be
thought of as the digital calculator existing “digitally” in code, but not yet able to be implement
on hardware. For hardware implementation, we needed to next connect the “digital” version
of the calculator to the Altera board. For this reason, the Operation Selector module is the layer
right below the pin assignments layer, which is the next module we will discuss. (Fig e-8)

9. Pin Assignment Module — This is the top layer of code, its purpose is to wire (connect) the
inputs and outputs of the Altera board, to the inputs and outputs of the operation select module.
(Fig e-9)

10. Pin Assignment Functional Simulation — This functional simulation shows that all
functionalities of the calculator are working for all the different combinations of inputs and
corresponding outputs. (Fig e-10)

HARDWARE:

e Altera Quartus Il — Programmable Logic Device Software
e Altera DE2-115 — FPGA Board

EXPERIMENT:

Brainstorming and the “Data Flow Model”

The very first thing our group did when presented with this project was to begin brainstorming and
conceptualizing the project at a very “black box” level. (Fig e-1) This means to begin first by
thinking in terms simply the inputs and outputs of calculator according the specification given by
the lab sheet.

After creating the black box diagram, it was soon realized that the main challenge this project
presented was the requirement that the HEX displays had to display different types of information
at different time’s. We had never been asked to do anything like this on any of our previous labs.
After thinking about to tackle that particular problem, it was realized that something would have
to “decide” or “select” which input would go to the HEX displays. It was then decided that
multiplexers would be used to make this selection.

The next step was to decide exactly how many mux’s there would be, and their position within the
calculator. Several configurations were considered, with one being started on, but then discarded
due to complications that were realized while building. Finally, what we are calling a “Data Flow
Model” was created. (Fig e-2)

A Data Flow Model, as we are defining it, means a specific way of handling the flow of information
through the circuit. This model is then consistently implemented in the same fashion, across all

Anton Lagergren
Enee 245 -- Lab #10

similar modules, and all similar groupings of modules. We thought it was very important to define
this early on because we felt that the way data flows within the calculator is what essentially
describes the requirements of which modules you would end up needing to implement. Following
this logic, if one was able to figure out a “cookie cutter” method that handled data in the same way
for all the operations, it would be very easy to then instantiate the same modules for each operation
(addition, subtraction, multiplication, division).

With that all in mind, we decided to try and implement a method in which all operations were
simply performed at the same time, and the user simply selected which operations output they
would like to display. We were able to have this happen by using four 4-input Mux’s (one to each
hex display) to display the output of the circuit. Every time a user made a selection of an operation,
let’s say addition, each one of the Mux’s would only output the information that was related to
addition. In this way, the HEX displays only ever received information which was correlated with
the KEY the user pressed.

The end result of the brainstorming and data flow model process led us to a top level block diagram
(Fig e-3) of the calculator which included all the main modules which would enable the calculator
to function. It should be noted that at this level, the inner workings of specific modules such as
decoders, encoders, mux’s or operations such as adding, dividing etc., were not realized yet.

Testing the Data Flow Model

Once the Data Flow Model (Fig e-2) was decided on, and the block diagram was created, one full
“flow” of data from input to output was tested in Verilog. This was done by creating only the adder
module, its decoder, and the four MUX’s. The purpose of doing this was to test if one decoders
data would be able to be selected and then output appropriately across each MUX.

Verilog -- Board Testing -- Troubleshooting

Once the Data Flow Model was confirmed to work, the rest of the components had their modules
coded in Verilog and then finally tested by a functional simulation. (Fig e-10)

The entire process went quite smoothly with the only significant issue being that we forget that the
Altera board is Active Low. This caused us to troubleshoot as to why the pushbutton keys were
active the entire time even when we were not pressing them.

Anton Lagergren
Enee 245 -- Lab #10

Fige-1
Black Box
A _. -
B
—. Hex 1
o _. Hex 2
Inputs « Outputs
_. Hex 3 ‘

Keys

O R NW

28 me

Hex7 Hex6 Hex5 Hex4

This illustration shows the initial Black Box representation of the calculator with only the
external inputs and outputs visible.

Anton Lagergren
Enee 245 -- Lab #10

Fig e-2
Brainstorming and the “Data Flow Model”

Data Flow Model

This illustration demonstrates the basis of operation of the calculator.

This test was done to ensure that when the user made a selction the
multiplexers would output the information the user selected.

Step 1

The user inputs two
8-bit numbers

Output

Add Decoder

Output

2%— Output
Select: 00=Additon |
3U)(

01 = Subtraction p=
10 = Multiplication -
11 = Division

Step 2 ‘E Step 3

Output

The output related to ONLY

The user makes a selection of Addition, is displayed.

which operation to perform.

In this case, an input of "00" is sent through select

Anton Lagergren
Enee 245 -- Lab #10

Fig e-3
Block Diagram

¥

The connections for the sub,multi, and div
decoders are intentionally not wired to the Mux's
in order to make the diagram more readable.

Both A and B are
8-bit Binary Inputs
A M(;X J Hex o
B /L
e Eh
Answer Displayed
z S on Hox(3.]
3% Hex 2
2 .
- Decoder A
L Decoder B
- Encoder
Keys i
0 00 = Additon
| 01 = Subtraction
Used to select 10 = Multiplication Hex7 Hex6 Hex5 Hex4
desired arithmetic 11 = Division
operation Input A Input B

This illustration shows the fully developed block diagram for the entire calculator after the
data flow model was tested.

Anton Lagergren
Enee 245 -- Lab #10

Fig e-4
Adder / Subtractor / Multiplier / Divider -- Module’s
1 module adder simple (A,B,Sum);
2
2 input [7:0] A,B:
4 oatput [2:0] Sum;
2
[azsign Sum = & + B:
7
8 endmodule
£
1 module subtract simple (A, B, difference);
2
3 input [7:0] A,B:
4 output reg[7:0] difference:;
&
[alwavs
T A= begin
8
5 if (& > B)
10 i | difference = A - B
11
12 if (& < B)
13 { | difference = B - A:
14
15 end
16 =
17 endmodule
18
1 module multi simple (A, B,product);
2
3 input [7:0]14,B;
4 oatput [l5:0])product:
S
& assign product = [(L*E);
7
8 endmodale
9
1 module divider simple (&4, B, remainder, gquotient);
> —
2 input [7:0]14,B;
4 ouatput [7:0]guotient, remainder;
&
& Sfreqg [15:0] out:
7 wire [7:0] guotient;
8
o aszign gquotient = (ASB):
10 assign remainder = ([(B*quotient) - A)*(-1)});
11
12 endmodule
13

Anton Lagergren
Enee 245 -- Lab #10

Fig e-5
Decoder Module’s

1 module decoder add(x,z,addnex0,addnexl,addnex2, addnex3) ; % 73 always
2 74 B begin
3 input [2:0] x: 75 B
3 cutput [2:0] z: 76 0: addhex3
5 assign z = x; 77 addhex3
& 78 addhex3
7 cutput [6:0]addhex0; 79 addhex3
E} reg [6:0]addhex0; 80 addhex3
9 81 addhex3
L0 output [&:0]addhexl; 82 addhex3
b1 reg [6:0]addhexl; 83 addhex3
L2 84 addhex3
L3 output [6:0]addhex2; -1 addhex3
4 reg [6:0]addhex2; 86 addhex3
LS 87 addhex3
15 cutput [6:0]addhex3; a8 addhex3
T reg [6:0]addhex3; £ addhex3
L8 k=Dl : addhex3
19 always 91 : addnex3
= begin 9z endcase
1A case (X[3:0 a3 end
b 4 0: addhexd = 7'b10 94 ’
3 1: addhex0 = 85 always
= 0: addhex0 = 98 =] begin
s 1: addhex0 = a7 B caze (x[7:4])
& 0: addhexD = a8 00: addhex3
i 1: addhexD = a8 addhex3
8 0: addhex0 = 100 addhex3
9 addhexD = 101 addhex3
0 addhexD = 102 addhex3
1 addhexD = 103 addhex3
2 addhex0 = 104 addhex3
3 1: addhexD = 105 addhex3
4 0: addnex0 = 106 addhex3
5 1: addhexD = 107 addhex3
& 0: addhex0 = 108 addhex3
T 4 1: addnex0 = y 109 addhex3
8 F endcase 110 addhex3
9 end 111 addhex3
- - 112 addhex3
always 113 1: addhex3
=] begin 114 endcase
=] caze (x[7: 115 end
addhexl = 7'bl0
addhexl = 7'b: - - .
samen - 7 This illustration shows the Decoder Module
addhexl =
seanes - for the Adder.
addhexl = /
addhexl = 7
addhexl = 8
addhexl = 9 -
sddsest - : The decoder breaks the users 8-bit numbers
addhexl = / C H - L
S Q into sections of 4 bit's.
0: addhexl = { E
11: addhexl = / F
E endcase
end ol
Then, each of these 4 bit's are translated
always
= into a value to be displayed on a specific
0: addhex2 [/ 0
1: addnex2 01 HEX_
r endcase
end
.
In the case of the Adder, the maximum number

generated from adding two 8-bit Binary
numbers is 9-bits. When translated to
hexidecimal, this value is 1FE. This only takes 3
displays to show that information so the third
display is not needed and therefore blanked
out.

This is done by sending 7b'1111111 to the HEX
display, which causes all LED's to be turned off,
since they are connect to the Altera Board,
which is Active Low. Meaning a value of high

(or 1) is equivalent to OFF.

Anton Lagergren
Enee 245 -- Lab #10

Fig e-6
Encoder Module o o
1 module encoder keys (EEY, choice made);
2
& input [3:0]1KEY:;
4 output [1:0]choice made;
5 reg [l1:0]choice made;
6
7 always
8B B begin
3 g {1 casex (KEY[2:0])
10 ¢ i 0 0 1 4'p1111: choice made = 2
11 ¢ i i 1 ! 4'bl110: choice made = 2
12 4'b1101: choice made = 2
13 : : : : H 4'b1011: choice made = 2
14 © ¢ 1 ¢ i 4'p0lll: choice made = 2
15 - E E endcasze
16 end
17
18 =
19 endmodule
20 L L
21 Inportant to remember :::: The Altera Board is ACTIVE LOW ::::
22 Meaning 4'bl111 = A value of ---- all Eeys are QOFF -——————-- iz sent through
23 Meaning 4'bl1110 = A wvalue of ---- first key (or 0th key) --- is sent through
24 ___
25

The illustration above shows the Encoder Module.

It has the same functionality as the Decoder except in the reverse fashion whereby

it takes information from the board and translates it into information to be used within the
module.

Here, each KEY corresponds to a selection of an operation.
00 = Addition
01 = Subtraction

10 = Multiplication
11 = Division

10

Fig e-7
Multiplexer Module’s

Anton Lagergren
Enee 245 -- Lab #10

[V T TR s O oy Y O PV % Ty

[T T T Y T T 5 T T T B L 8 i e e T e o]
[T T v T W T = Y I o Y R VT . Y e T W T TS [Ny Y U Y % Ty e o

=
=

module MIOX FOUR BY ONE (select,bl,bl,b2,b3,out);

input [15:0] bO0,bl,b2,b3; //Four inputs that accept 8 bit information

input [l1:0]=select: S The select input iz 2 bits

output reg [€:0] out; S/ One of the inputs is selected and
‘ ‘ ‘ ‘ ‘ ‘ { // pushed to the output, =o the output
S/ must also be & bits

always
begin

case (select)
2'200: out = b0;
2'B01: out = bl;
2'210: out = b2;
2'B211: out = b3;

éndcase

end
/f The case statement is always executed
Jf it causes the following desicion to take place

'y if =select = 00

Fr output = bl

'y if =select = 01

I output = bl .. and so on
endmodule

/f startc 6:50 PM 5/3/201&
J/ end £:52 BM 5/4/201&

11

Anton Lagergren
Enee 245 -- Lab #10

Fig e-8
Operation Selector Module

1 module operation selector (A, B, KEY, mux0, muxl, max2, mux3, dechhex7, dechhex6, decBhext, decBhexd) ;

2

3 input [T7:0]A,B:

4 input [3:0]KEYX;

5 cutput [6: 0]max0, maxl, max? , mux3;

[ocoutput [6:0]dechhex7, dechhext, decBhex5, decBhex4;

7

8

9 START-———-————-————"—"—"—"—"——— o ——— Decoder=s for Incoming Numbers & and B —-
10 £ Group A Decoder

11 E E E decoder L (A,dechhexT,dechhexé);

12 £ decoder L (&,dechhex7,dechhexé)

13 E E E wire [6:0]decBhex7,dechhexb;

14

15 ff Group B Decoder

16 i | | decoder B (B,decBhex5,decBhex4);

17 £ decoder B (B,decBhex5,decBhex4)

1g i 1 | wire [6:0]decBhex5,decBhex4;

15 SFEWDb—————————— — — — — — — — — - — - — . —————————————— Decoders for Incoming Humbers L and B ———-—
20

21

22

23 S {START——————————————————— ———_————————————— e ——— Encoder for Incoming Keys 3,2,1,0 —————-
24 Iy Push Button Encoder

25 E E E encoder keys (KEY, choice made);

26 Ir encoder keys (KEY, choice made) ;

27 E E E wire [l1:0]choice made:

28 SFENDH———r——————— — - — - — - — - -— — - — . ————_—————————————— Encoder for Incoming Eeys 3,2,1,0 ——————-—
23

30

21

32

The Operation Selector Module is where all the individual modules which make up the
calculator are “housed”. It is the “code” representation of the interior graphics of Fig-3.

This module can be considered the digital representation of the entire functioning
calculator, but because there is not module which interacts with the board yet, it cannot be
tested on the FPGA yet. That is what the Pin Assignment Module is for.

Note* -- Code is continued on the next page.

12

32
33
34
35
1
37
38
39
40
41
42
43
44
45
46
47
48
49
o0
a1
52
53
o4
55
56
a7
S8
59
60
6l
62
63
64
65
(1]
a7
68
69
T0
T1
T2
T3
T4
T5
76

81
82
83
84
85
86
a7
a8
89
1]
a1
22
a3
o4
a5
98
o
a8
ag
100
101

£ A

/AR

F/D

/D

Anton Lagergren
Enee 245 -- Lab #10

—— Calls for Cperations (add/sub/multi/div) Modules —-

DDER Call
| adder simple (&,B,Sum):
// adder simple (&,B,Sum);:
Ewire [2:0] 5um;

DDER Decoder
Edecnder_addtSum,z,addhexﬂ,addhexl,addhexE,addhexS};

/f decoder add(x,z,addhex0, addhexl, addhex2, addhex3) ;
éwire [6:0]addhex0, addhexl, addhex2, addhex3;

//SUBTRACTOR_Call

gsubtract_simple (A,B,difference);
// subtract_simple (&,B,difference);
iwire[7:0]difference:

//SUBTRACTOR_Decoder
§decnder_subtA,B,difference,z,subhexo,subhexl,subhexz,subhex3};

Iy decoder sub (4, B, x, 2z, subhex0, subhexl, subhex2, subhex3) ;
Ewire [6:0] subhex0, subhex], subhex?, subhex3;

f/MULTIPLIER Call

?multi_simpletB,B,product};
/f multi simple (A,B,product);
wire[l5:0]product;

//MULTIPLIER Decoder
;decnder_multi:prnduct,z,multihexo,multihexl,multihexz,multihexS]:
I decoder multi (x,z,multihex0, multihex]l, maltihexd, multihex3);

wire [6:0]maltihex0,multihex], multihex? maultihex3;

IVIDER Call
Edivider_simple:A,B,remainder,quntient}:
/f divider simple (R, B, remainder, quotient);
wire[7:0]guotient, remainder;

IVIDER Decoder

wire [&:0]divhex0,divhexl,divhex2, divhex3;

and thier associated Decoders ————————————

Edecoder_divtquotient,remainder,divhexo,divhexl,divhexZ,divhexS};
I decoder div(gquotient, remainder,divhex0,divhexl,divhex2, divhex3):

—— Calls for Operations (add/sub/multi/div) Moduoles —-

BT R ——————————— Multiplexers:
——— Each of which output to one particular HEX Display -

/o

.

1"

MOX to hexZERO
MUX FOUR_BY ONE (choice_made, addhex0, subhex0,multihex0, divhex0, mux0) ;

MUX to hexCNE
MO¥ FOUER BY ONE (choice made, addhexl, subhexl,multihexl,divhexl, maxl};

MOX to hexTWO
MUX_FOUR_EY ONE (choice_made, addhex2, subhexd,multihex?,divhex2, muxd) ;

MU¥ to hexTHREE
HMO¥ FOUR BY ONE (choice made, addhex3, subhex3, multihex3, divhex3, ma=3);
MIUX FOUR_BY ONE (select,bl,bl,b2,b3,out);

——— Multiplexers:

endmodule

and thier associated Decoders ————————

Each of which output to one particular HEX Display -

13

Anton Lagergren
Enee 245 -- Lab #10

Fig e-9
Pin Assignment Module

1 module pin assignments (5W,KEY, HEX7, HEX6, HEXS, HEX4, HEX3 , HEX2, HEX1, HEX0, LEDG, LEDR) ;
2

3 input [15:0]5W;

4 input [3:0]KEY:;

5 output [6:0]HEX7, HEX6, HEXS, HEX4, HEX3, HEX2 , HEX1 , HEX0;

& cutput [6: 0] LEDG;

7 outputc [15:0]LEDR;

8

g assign LEDR[15:0] = SW[15:0]:

10 assign LEDG[O] = !'KEY[O]:

11 assign LEDG[2] = !'KEY[1]:

1z assign LEDG[4] = !'KEY[2]:

s assign LEDG[&] = 'KEY[2]:

14

1Ls)

16

17

18 operation selector (SW[15:2],5W[7:0],KEY[3:0],HEX0,HEX]1, HEX2, HEX3, HEXT, HEX&, HEX5, HEX4) ;
19 // operation selector (&, B, EEY, mux0, maxl, mux2 , max3, dechhex7, decAhexd, decBhex5, decBhexd) ;
20 wire [15:0]5W;

21 wire[3:0]KEY;

22 wire[g:0]HEXT7, HEX6, HEXS HEX4,HEX3 , HEXZ , HEX1, HEX0;

23

24 endmodule

25

This is the top layer of code, its purpose is to wire (connect) the inputs and outputs of the
Altera board, to the inputs and outputs of the operation select module.

14

Anton Lagergren
Enee 245 -- Lab #10

Fig e-10

Pin Assignment Functional Simulation

A=7

B=0

Key = 1110 = Add
Displayed Value = 007,

A=12
B=2

Key = 1101 = Subtract

Displayed Value
12-2=10,
= >Hm

A =253
B=4

= 0A,

Key = 1001 = Multiply
Displayed Value = OE74,,

A =135

B=6

Key = 0111 = Divide
Displayed Value = 1603,,
[This means 6 goes into 135
16 times. 16,= 22
Remainder =03 ,,

oeat | 0P s 400ns 600ns 80.0ns 1000ns 1200ns 1400ns 1600ns 1800ns 2000ns 220.0ps 240.0ns 250.0ns 280.0ns 3000ns 320 340005 H00ns WO0ns 404
Name o j > > \hb/
B pswa U7 i 7 1\ 55 Vi 12 N\ 142 yd 253 AN 194 Vi 135 \ [3
A ¥ ya X ya X ya
B »sws U o % 1) d 2 W 3 b4 4 X 5 bl [hV4 7
17 ry by r 4 Y r/ {
B oakEr B 1110 1110 X 0000 / 1101 b 0000 7 \ 0000 X 0111 X
. KEY[Z) B1 / ‘. /
in_ KEY[2) B 1 J _~ '
o KEY[H) B 1 — a [mmm
- KEY[0) BO I ——— e — L
HEXD B 1111000 1113000 5000000 0001000 5000011 0011001 5001000 0110000 000
HEXL B 1000000 1000000 0110000 1000000 0000000 0001110 1000110
© HEX2 B 1000000 1000000 11111 0110000 0000010 10000
(s 1 i 1 f
» HEX3 B 1111111 | 1] 1 1000000 | | 1111001 [1000000
¥ !] i 1 L1 7
© HEX4 B 1000000 1000000 | 1111001 1 0100100] 0110000 \ 0011001] 0010010 1 0000010 I 1111000
¥ 13 1 X 4 X 7
HEXS B 1000000 Fi hY i Y I 1Y i 10000
2 L1 { LY i LY v
HEXG B 1111000 K J 1111000 W 1000110 b 0000110 W 0100001 0100100 b 1111000 i 00001
X r L4 / X by 7
M e B 1000000 \ 1000000 /- 0110000 b 1000000 e 0000000 by 0001110 1000110 hN 0000000 7 1000000
Additon @ Subtraction| {} Multiplication | £ Division 4
Decoder Chart

decBhexf
dechhexé
decihexé
dechexf
dechhexé
decBhexf
dechhexé
dechhexé
dechexf
dechhexé
dechhexé
dechhexf
dechhexé
decBhexf
dechhexé
: dechhexé

MELOD Lo 6me w0 e

15

Anton Lagergren
Enee 245 -- Lab #10

POST LAB ANALYSIS:

Comment on the structure of your Verilog implementation. Check
“Design Units” under Project Navigator to find all the units that are used
in your design. What is each unit and what does it do?

MUX_FOUR_BY_ONE (Verilog HDL entity) — Module which implements a 4x1 Multiplexer
adder_simple (Verilog HDL entity) — Module which implements an adder

subtract_simple (Verilog HDL entity) — Module which implements the subtractor
divider_simple (Verilog HDL entity) — Module which implements the divider

multi_simple (Verilog HDL entity) — Module which implements the multiplier

decoder_A (Verilog HDL entity) — Module which decodes the group A numbers into Hex values
decoder_B (Verilog HDL entity) — Module which decodes the group B numbers into Hex values
decoder_add (Verilog HDL entity) — Module which decodes the addition answer into Hex values
decoder_div (Verilog HDL entity) — Module which decodes the division answer into Hex values

decoder_multi (Verilog HDL entity) — Module which decodes the multiplication answer into Hex
values

decoder_sub (Verilog HDL entity) — Module which decodes the subtraction answer into Hex
values

encoder_keys (Verilog HDL entity) — Module which encodes the push keys into 2 bit values for
the MUX’s select inputs.

multi_simple (Verilog HDL entity) — Module which implements the multiplier

operation_selector (Verilog HDL entity) — Module which “houses” all the component modules
of the calculator

pin_assignments (Verilog HDL entity) — Module which connects the pins of the board to the
inputs and outputs of the operation selector (digital calculator).

16

Anton Lagergren
Enee 245 -- Lab #10

CONCLUSIONS:

As a group we feel that this lab challenged us to bring together every aspect of our knowledge we
learned throughout the semester concerning building digital circuits and using Verilog. This
project caused us to push our boundaries and come up with solutions for types of problems we had
not encountered until now. Our main take away from this experience is the opportunity it granted
us to enhance our understanding of how to approach building complex systems involving digital
circuits.

17

