
Anton Lagergren
Enee 245 -- Lab #10

1

Lab Report #10

Anton Lagergren
Enee 245 -- Lab #10

2

OBJECTIVE: The purpose of this lab was to construct a circuit which acted as a digital calculator.

More specifically, the assignment was to create a circuit which was able to take two 8-bit numbers

as input and have one of the basic arithmetic operations (addition, subtraction, division,

multiplication) act upon those two numbers. The requirements stated that the output must be

displayed on 7-segment displays located on the Altera FPGA board.

DESIGN: The general procedure for constructing the circuit is given by the following steps:

1. Black Box – The very first thing our group did was to draw a black box of the calculator. This

showed simply the inputs and outputs from the board level. This is what gave us a basis to

begin brainstorming the inside or the “brains” of the calculator. (Fig e-1)

2. Brainstorming and the “Data Flow Model” – This part of the project involved

conceptualizing the process of turning input into output. It was realized that defining this was

crucial at the beginning because it would define how the block diagram would turn out.

For example, we decided the way we wanted to calculator to perform was to calculate all

arithmetic operations simultaneously, and then the user selected which information to display.

Our block diagram may have turned out differently if we decided we wanted each operation

selected first, that way only one operations output is ever being calculated at a time. This is

what we mean when we say “Data Flow Model”. (Fig e-2)

3. Block Diagram – Once the “Data Flow Model” was tested and confirmed to work for one

arithmetic operation (addition), the same procedure was carried out on the remaining three

operations as well as creating other modules need to complete the design. (Fig e-3)

4. Adder / Subtractor / Multiplier / Divider Module’s – Each of these modules was implemented

by using the built in arithmetic operators (+ , - , * , /) available in Quartus. (Fig e-4)

5. Decoder Module’s – Each of the decoders operated on the same similar principle with only

minor specifics being altered for each arithmetic operation. Examples of differences in code

between modules were the number of bits accepted for the input, and, the output configuration

for each Hex display. (Fig e-5) Note* -- Because the code is so lengthy, to save space, only

the adder decoder is shown in the report, but all the decoders operate on the same principle.

6. Encoder Module – This module takes in input from the user through the use of the push keys

on the board and translated it into information used by the multiplexers to select which

operations output to push through to the 7-segment displays. The encoder operates on the same

principle as the decoder, it just does it in the reverse fashion. (Fig e-6)

7. Multiplexer Module’s – These modules were all identical. They were used to accept

information from the decoders, and also to pass information on the HEX displays once a

selection was made by the user through the use of the push keys. (Fig e-7)

Anton Lagergren
Enee 245 -- Lab #10

3

8. Operation Selector Module – This is the module which houses all the “component modules”

of the calculator, and is the module where all the “component modules” are wire to one another

in order to create the functionality of a calculator. The Operation Selector module can be

thought of as the digital calculator existing “digitally” in code, but not yet able to be implement

on hardware. For hardware implementation, we needed to next connect the “digital” version

of the calculator to the Altera board. For this reason, the Operation Selector module is the layer

right below the pin assignments layer, which is the next module we will discuss. (Fig e-8)

9. Pin Assignment Module – This is the top layer of code, its purpose is to wire (connect) the

inputs and outputs of the Altera board, to the inputs and outputs of the operation select module.

(Fig e-9)

10. Pin Assignment Functional Simulation – This functional simulation shows that all

functionalities of the calculator are working for all the different combinations of inputs and

corresponding outputs. (Fig e-10)

HARDWARE:

• Altera Quartus II – Programmable Logic Device Software

• Altera DE2-115 – FPGA Board

EXPERIMENT:

Brainstorming and the “Data Flow Model”
The very first thing our group did when presented with this project was to begin brainstorming and

conceptualizing the project at a very “black box” level. (Fig e-1) This means to begin first by

thinking in terms simply the inputs and outputs of calculator according the specification given by

the lab sheet.

After creating the black box diagram, it was soon realized that the main challenge this project

presented was the requirement that the HEX displays had to display different types of information

at different time’s. We had never been asked to do anything like this on any of our previous labs.

After thinking about to tackle that particular problem, it was realized that something would have

to “decide” or “select” which input would go to the HEX displays. It was then decided that

multiplexers would be used to make this selection.

The next step was to decide exactly how many mux’s there would be, and their position within the

calculator. Several configurations were considered, with one being started on, but then discarded

due to complications that were realized while building. Finally, what we are calling a “Data Flow

Model” was created. (Fig e-2)

A Data Flow Model, as we are defining it, means a specific way of handling the flow of information

through the circuit. This model is then consistently implemented in the same fashion, across all

Anton Lagergren
Enee 245 -- Lab #10

4

similar modules, and all similar groupings of modules. We thought it was very important to define

this early on because we felt that the way data flows within the calculator is what essentially

describes the requirements of which modules you would end up needing to implement. Following

this logic, if one was able to figure out a “cookie cutter” method that handled data in the same way

for all the operations, it would be very easy to then instantiate the same modules for each operation

(addition, subtraction, multiplication, division).

With that all in mind, we decided to try and implement a method in which all operations were

simply performed at the same time, and the user simply selected which operations output they

would like to display. We were able to have this happen by using four 4-input Mux’s (one to each

hex display) to display the output of the circuit. Every time a user made a selection of an operation,

let’s say addition, each one of the Mux’s would only output the information that was related to

addition. In this way, the HEX displays only ever received information which was correlated with

the KEY the user pressed.

The end result of the brainstorming and data flow model process led us to a top level block diagram

(Fig e-3) of the calculator which included all the main modules which would enable the calculator

to function. It should be noted that at this level, the inner workings of specific modules such as

decoders, encoders, mux’s or operations such as adding, dividing etc., were not realized yet.

Testing the Data Flow Model
Once the Data Flow Model (Fig e-2) was decided on, and the block diagram was created, one full

“flow” of data from input to output was tested in Verilog. This was done by creating only the adder

module, its decoder, and the four MUX’s. The purpose of doing this was to test if one decoders

data would be able to be selected and then output appropriately across each MUX.

Verilog -- Board Testing -- Troubleshooting
Once the Data Flow Model was confirmed to work, the rest of the components had their modules

coded in Verilog and then finally tested by a functional simulation. (Fig e-10)

The entire process went quite smoothly with the only significant issue being that we forget that the

Altera board is Active Low. This caused us to troubleshoot as to why the pushbutton keys were

active the entire time even when we were not pressing them.

Anton Lagergren
Enee 245 -- Lab #10

5

Fig e-1

Black Box

This illustration shows the initial Black Box representation of the calculator with only the

external inputs and outputs visible.

Anton Lagergren
Enee 245 -- Lab #10

6

Fig e-2

Brainstorming and the “Data Flow Model”

Anton Lagergren
Enee 245 -- Lab #10

7

Fig e-3

Block Diagram

This illustration shows the fully developed block diagram for the entire calculator after the

data flow model was tested.

Anton Lagergren
Enee 245 -- Lab #10

8

Fig e-4

Adder / Subtractor / Multiplier / Divider -- Module’s

Anton Lagergren
Enee 245 -- Lab #10

9

Fig e-5

Decoder Module’s

Anton Lagergren
Enee 245 -- Lab #10

10

Fig e-6

Encoder Module

The illustration above shows the Encoder Module.

It has the same functionality as the Decoder except in the reverse fashion whereby

it takes information from the board and translates it into information to be used within the

module.

Here, each KEY corresponds to a selection of an operation.

00 = Addition

01 = Subtraction

10 = Multiplication

11 = Division

Anton Lagergren
Enee 245 -- Lab #10

11

Fig e-7

Multiplexer Module’s

Anton Lagergren
Enee 245 -- Lab #10

12

Fig e-8

Operation Selector Module

The Operation Selector Module is where all the individual modules which make up the

calculator are “housed”. It is the “code” representation of the interior graphics of Fig-3.

This module can be considered the digital representation of the entire functioning

calculator, but because there is not module which interacts with the board yet, it cannot be

tested on the FPGA yet. That is what the Pin Assignment Module is for.

Note* -- Code is continued on the next page.

Anton Lagergren
Enee 245 -- Lab #10

13

Anton Lagergren
Enee 245 -- Lab #10

14

Fig e-9

Pin Assignment Module

This is the top layer of code, its purpose is to wire (connect) the inputs and outputs of the

Altera board, to the inputs and outputs of the operation select module.

Anton Lagergren
Enee 245 -- Lab #10

15

Fig e-10

Pin Assignment Functional Simulation

Anton Lagergren
Enee 245 -- Lab #10

16

POST LAB ANALYSIS:

Comment on the structure of your Verilog implementation. Check

“Design Units” under Project Navigator to find all the units that are used

in your design. What is each unit and what does it do?

MUX_FOUR_BY_ONE (Verilog HDL entity) – Module which implements a 4x1 Multiplexer

adder_simple (Verilog HDL entity) – Module which implements an adder

subtract_simple (Verilog HDL entity) – Module which implements the subtractor

divider_simple (Verilog HDL entity) – Module which implements the divider

multi_simple (Verilog HDL entity) – Module which implements the multiplier

decoder_A (Verilog HDL entity) – Module which decodes the group A numbers into Hex values

decoder_B (Verilog HDL entity) – Module which decodes the group B numbers into Hex values

decoder_add (Verilog HDL entity) – Module which decodes the addition answer into Hex values

decoder_div (Verilog HDL entity) – Module which decodes the division answer into Hex values

decoder_multi (Verilog HDL entity) – Module which decodes the multiplication answer into Hex

values

decoder_sub (Verilog HDL entity) – Module which decodes the subtraction answer into Hex

values

encoder_keys (Verilog HDL entity) – Module which encodes the push keys into 2 bit values for

the MUX’s select inputs.

multi_simple (Verilog HDL entity) – Module which implements the multiplier

operation_selector (Verilog HDL entity) – Module which “houses” all the component modules

of the calculator

pin_assignments (Verilog HDL entity) – Module which connects the pins of the board to the

inputs and outputs of the operation selector (digital calculator).

Anton Lagergren
Enee 245 -- Lab #10

17

CONCLUSIONS:

As a group we feel that this lab challenged us to bring together every aspect of our knowledge we

learned throughout the semester concerning building digital circuits and using Verilog. This

project caused us to push our boundaries and come up with solutions for types of problems we had

not encountered until now. Our main take away from this experience is the opportunity it granted

us to enhance our understanding of how to approach building complex systems involving digital

circuits.

