
ALM and Anaplan App
Management
Four Corners Workshop
September 14, 2021

Day in the Life

• Why ALM?
• ALM Basics
• Approach & Setup
• ALM in Action
• Anaplan App Management

Why use Anaplan’s ALM?

Governance

• Enhances traceability
back to individuals,
project requirements,
bug IDs, etc.

• Separation of duties

• Data privacy

Development

• Methodical build, test &
deployment of changes

• Flexible with planned
updates or emergency
fixes

Operations

• Minimize business
disruptions

• Scalable with
organization

ALM Basics

ALM Basics

Model Mode Description Used For…

Standard

The default, standard mode provides full access to model data, including structural information. Depending on
user access and administrative rights, all actions are permitted in models in standard mode. Standard mode can
also be online or offline. Standard mode provides all the features and functionality you're used to. Model building
in standard mode is identical to model building in versions of Anaplan before ALM features were introduced.

Development models

Deployed

Deployed mode blocks any modifications from being made to a model’s structural information. The model can be
online or offline. It's not possible to add revision tags in deployed mode.
End users (or testers) can change a model’s production data by working with dashboards, entering data into
modules, managing users, and other similar activities.
Workspace administrators can only restore a model back to a restore point ID that existed after the model was
last synchronized. Enabling deployed mode doesn’t move a model to a different workspace or environment.
Do not disable deployed mode in production models or sync target models. If structural changes are made after
disabling deployed mode, the model will become incompatible for synchronization with previously compatible
source models. In some circumstances, you can recover a sync incompatible model by reverting to the most
recent revision tag.

Production models
Test models
Preventing accidental
changes while a model is
in production use

Locked Locking a model makes it read-only for all users, including workspace administrators. Making a model
temporarily read-only

Archived
Archiving a model enables you to store the model in Anaplan without it contributing to the workspace allowance.
You can restore an archived model, with all its data, into the same workspace at any time (provided the
workspace has enough space).

Maintenance
Reducing the total size of a
model’s parent workspace

• Create source/target relationships based on compatibility such that structural changes can be synced between models to
manage development cycle between Dev/Test/Prod while minimizing business disruption.

Production vs Structural

• Production data is operational data that changes during business operations
• Structural information consists of a model’s configuration setting and lists and cannot be edited when model is in deployed

mode.
• The exceptions that are treated as Production data are listed below:

• Lists
• Must be marked as “Production Data”
• Anaplan enforces Formula Reference Protection – cannot make direct formula reference to item in a

Production List
• Imports & Import Data Sources

• A single “Master” model with multiple spoke models of the same structure might have difference data sources
• E.g. T&Q models split by Region

• Users
• Items to Remember

• Switchover Period is Structural – it is potentially destructive for forecast data
• Native Versions are Structural

https://help.anaplan.com/d129b0e3-34f7-4135-b27e-5956ed56e8d2-Formula-Reference-Protection-for-Production-Lists

Approach & Setup

Questions to Ponder

• What ALM structure will work best?
• What naming conventions will your team enforce?

• “DEV Model Name” vs “Model Name DEV”
• Sorts are different
• Model Name you see as a model builder – the whole name is not always visible

• Revision Tags
• E.g. Major.Minor.HistoryID

• What is the right cadence of ALM pushes?
• Different throughout each project phase

• What types of users need access in each environment?
• What is release strategy after go-live?

Understanding & estimating model size across Dev/Test/Prod models is key factor
in thinking through ALM approach

Single Threaded Development

This is the standard ALM strategy and works well when the work is serialized.

1. Make changes directly in DEV Master
• Unit test the changes in DEV

2. Create a Revision Tag
• Update Revision (Tracker) List
• Note the History ID after the change above and use this for the Revision

Tag.
3. Promote changes to Test from DEV Master

• Use production quality data
• Involve users if necessary
• Perform integration and functional tests as needed

4. Promote changes to Prod from DEV Master
• Promote only when Testing is complete
• Put the model in offline mode if the changes are extensive so you have a

chance to confirm the changes
• Verify the changes by viewing the details of the Revision Tag
• Confirm key changes in Prod
• Make sure the Model is Online

Multi-Threaded Development (aka Sandbox)

• When parallel development work is needed you can use this strategy. It does require in many cases for
the developer to replicate the work manually due to ALM requirements.

• If one thread depends on changes from another thread, you have to manually re-create those changes.

Multi-Threaded Development Steps (aka Sandbox)
1. Copy DEV Master into a new DEV Model

• Always use DEV Master as the source for copying when multiple models (threads) are created
• Name the model appropriately for the work being done – e.g. use a Backlog (User Story) ID number

2. Copy PROD (or TEST) as a target for the DEV copy
• The copy should reside in a TEST workspace, separate from PROD

3. Make changes in DEV x
• If there are changes in another DEV Thread that are needed, manually re-create those changes.
• Unit Test
• Create Revision Tag

• DEV copy revision tag names should suffix with the backlog ID: major.minor.historyID.backLogID
4. Promote to QA x from DEV x

• Perform Integration and Functional testing
• Include business if needed
• Make sure all testing is complete and passed before the next step

5. Replicate changes from DEV x to DEV Master
• If no changes have taken place to DEV Master you can use ALM to promote the Revision tag. Otherwise manually re-create the changes. Use the

Compare function in DEV x and use the output as a guide to re-creating the changes in DEV Master.
• Perform Unit Testing to verify changes
• Update Revision Tracker List
• Create a new Revision Tag (this one is specific to DEV Master)

6. Promote DEV Master to TEST
• Include Business if needed if they were not already involved in step 4
• Make sure all testing is complete and passed before the next step

7. Promote DEV Master to PROD
• See Single Threaded Steps, Step #4

Separation of Duties

Workspace 1
Development

• Dev WSA
• Internal IT
• Anaplan Consultant
• Model Builders

Workspace 3
Production

• Prod WSA
• Internal IT

Workspace 2
Test/QA

• Test WSA
• Internal IT

Workspace 4
Data Hub

Test Model
• Testers

Prod Model
• End users

• Data Hub WSA
• Internal IT

Prod Data Hub
(Production

Data)
• End users

Process/Action Process/Action

SYNC

SYNC

Dev Model

Dev Data Hub
Model

(Sanitized data)

Release Strategy for Production Model (Example)
• Determined and managed by Anaplan Center of Excellence
• Release cadence based on the release type & process calendar

• Identify one time during the Week/Month where changes can be promoted, when the business is not
disrupted (i.e. not during month-end). The exception is for Stopper Bug fixes.

• Major –these are large changes that affect functionality and user experience. You must use change
management to make sure the business is prepared.

• Minor –these are smaller changes that do not require training and can include fixes that are not classified as
blockers.

• Stopper Bug Fixes –when the business is blocked, this must be released as soon as possible.
• Revision Tag Naming Conventions

• Major.Minor.HistoryID–e.g. 1.0.123456
• HistoryID is the latest ID from History that corresponds to the structural changes.
• Use a Summary description about this release. Avoid too much detail –instead use the “Compare” function

to see the specific changes if needed. Include the backlog ID in the description.
• Take Prod Offline

• Sync changes, spot check the model and then turn Prod back into Online mode
• In DEV Master

• Use a Revision Tracker List (non Production) that can be viewed in a Dashboard and can be used to finalize
HistoryID for revision tag naming. You can copy the description you add here to the Revision tag.

• Copy-Archive PROD Model before any major change
• You cannot roll back a model to a point in history if it affects structure so create the archive in case you need

to revert the changes.

Two Options to Create New Model

Copy
• Quickly roll out to a deployed model because

you can selective clear lists/modules and only
reload subset of data

Empty Model from Revision Tag
• Opportunity to fully re-test ALL integration

actions to load master/transactional data

Regardless of approach, it is best practice to build “Delete from list” actions within
each model.

ALM in Action

Hotfix aka Back to the Future

• What is a Hotfix to a Deployed model
• You have changes in progress that are not ready for production

deployment but a bug fix is needed right away and you don’t want the WIP
to deploy.

• Prerequisite
• Proper Revision Tag naming

• Major.Minor.HistoryID – e.g. 2.1.123456
• Or Date.Version_HistoryID

• Good team communications

HotFix Steps in Dev Model

• Steps in DEV model
1. Inform all model builders: do not make

changes in DEV
2. Note most current History ID – you will

need this in a later step
3. Identify History ID of latest revision to

Production – that’s where the Revision Tag
naming comes in handy

4. Restore to History ID (latest Prod revision
tag)

5. Implement Bug Fix
6. Create Revision Tag – same naming

convention but add Hotfix (e.g.
2.1.123457.Hotfix)

7. Promote changes (optionally to TEST
model first)

8. Restore to History ID from Step 2
9. Re-implement Bug Fix

Revert to Last Revision

• This only activate under these conditions
• Production Model was taken out of deployed mode, then someone made

structural changes. Model likely put back into deployed mode. This
effectively breaks the ALM chain.

• If you take model out of deployed mode, the “Revert to Last Revision” will be
active. Use this to restore ALM connectivity.

• Revert will not work under these conditions
• The target model is Copied (creates quasi revision tag) – even if in deployed

mode.
• Someone explicitly creates a Revision tag in the target model

Worst Case – ALM is Broken

• Create new DEV model from PROD
1. Rename existing DEV model
2. Copy PROD to new DEV (standard mode)
3. In new DEV,

• Re-create any changes from old DEV – use Compare Revisions to
see specific changes. Create new Revision Tag

4. Note: this DEV model will not have any prior History or Revision tags. This
is the case with any copied model.

• Your old DEV can act has an historical archive (for reference only)

Things to Remember…
• Model copy (Copy/Import/Create from Tag) erases all Model History in newly created model

• Revision Tags
• Add at least one revision tag per day during model building
• Add a revision tag after completing a significant piece of model functionality

• ALWAYS use Dev as source, mitigate chance of breaking the chain

• You can sync between two models in Standard Mode << but WHY?

• Cannot copy model across tenants (must go to Anaplan Support)

• ALM across workspaces:
• Use Manage Model > Import to copy a Dev Model from a different workspace OR
• Use Create Empty model from Revision (can only be saved to the same Workspace) - then Manage Model >

Import
• Delete the original empty model

• ALM can be automated by utilizing Anaplan's public REST API

• If all else fails, contact Support ASAP!

https://help.anaplan.com/85bf7966-d357-4f41-a50f-07d51d7b5ac5

Anaplan App Management

ALM for Pages

• Associate multiple models for a page and associate
additional models as potential data sources.

• All models associated with a page should be part
of the same ALM chain

• Users can toggle to see page using different
underlying models’ data (they must have access to
the models)

• Save vs Publish page changes
• Save - Create/update pages against data

from the development model in
coordination with other model structural
changes (Page name will included
“Unpublished Changes” status in upper-
right upon opening design mode)

• Publish – AFTER sync between models so
that page/cards display properly, otherwise
you get…

https://help.anaplan.com/e144323c-122e-4bc4-89a8-3fe3b66836ce-Associate-a-model-with-a-page

Apps & Models
• Apps can ONLY be associated with models in the same workspace

• If you archive a model you automatically archive the app that is tied to it.
• Repoint the App to a model that isn’t going to get archived so that it doesn’t go away
• If you don’t use ALM (WHY??), and you don’t have the space to have two copies Unarchived, then point App to an

“empty” model. Cards won’t render, but repoint back to the right model, then they will work

• If you just create a copy of the App, then you lose any personal pages that were made

• App is tied to the Model GUID, NOT the model name

• If you DELETE a model, then you’ll need to reach out to Support to restore/retrieve the APP – do this ASAP!!

• You can restore deleted APPS (as a Page Builder) from the home App page

• Apps cannot have the same name (even against those that are archived)

• If App has pages pointed to multiple models (A&B), and model B gets archived, then all pages that pointed to Model B
go away

• History Log for Pages is on the roadmap!

Q A

