blhizz

by TeamViewer

APl Docume

blizz

Introduction by TeamViewer

Table of Contents

Introduction

H

Definitions 4
Instant Blizz Meetings 4

Start meeting via URL using the Web Client 5

Start meeting via URL using the Windows or Mac client directly 5
The TeamViewer REST API 6
IDs 6
Date format 7
Number format 7
Rate limits 7
Roles & Terms 8
Registering an application in the Management Console 9
Client/Application-Types 9
Access Token Permissions and Scopes 10
The authorization process 1n
User level access n
Authorization Endpoint 12

GET login.teamviewer.com/oauth2/authorize 12

POST /api/vl/oauth2/token (token endpoint) 13

POST /api/vl/oauth2/revoke 15
API Functions L4
Ping 17

GET /api/Vvl/ping 17
Meetings 18

GET /api/vl/meetings/blizz (list all scheduled meetings) 18

GET /api/vl/meetings/blizz/<mID> (get details of a meeting) 19

API Documentation 2/25

blhzZ

Introduction by TeamViewer
POST /api/vl/meetings/blizz (create a new meeting) 20
HTTP response codes 23
JSON error responses 23
Contact 25

API Documentation 3/25

Introduction

blizz

by TeamViewer

Introduction

Definitions

Name

Organizer

Participant

Client

Description

The user who controls the meeting.
The initiator of a meeting is always an organizer.

To use the Blizz API the organizer needs to have
a TeamViewer account.

A participant in a meeting is anyone who con-
nects to a meeting.

Each participant can be assigned to another role
as well as certain rights by the presenter and or-
ganizers. The user does not need to have a
TeamViewer account.

The application (or user, if the HTTP requests are
typed in manually) that uses the API.

Instant Blizz Meetings

Blizz meetings can be started instantly via URLs. The meeting ID is the
personal meeting ID of the signed in organizer or the meeting ID of a
manually scheduled meeting. The APl is not needed for that. In case
you want to automatically schedule a Blizz meeting you can use the
TeamViewer API for that.

API Documentation

4/25

blhizz

Introduction by TeamViewer

The organizer can start an instant Blizz meeting with the personal
Blizz meeting ID, called “My meeting ID”.

The organizer must be signed into the web client:

The Web Client calls the installed Blizz application to start the meet-
ing.

Start a Blizz meeting with your shared screen

Start a meeting with your web camera and microphone enabled

Start a meeting with your microphone enabled

The organizer can start an instant Blizz meeting with the personal
Blizz meeting ID, called “My meeting ID”.

It the organizer has scheduled a meeting in advance via the Blizz
Scheduler or via the Blizz Microsoft Outlook integration, the sched-
uled Meeting ID can be used.

Example URLs

Start a meeting with your personal meeting ID:
blizzvil://hostmeeting

Start your scheduled meeting: blizzv1l://hostmeeting?meet-
ingid=m12345678

Commands
HostMeetingCommand = L"hostmeeting";
JoinMeetingCommand = L"joinmeeting";

StartVideoCallCommand
StartAudioCallCommand

L"startvideocall”;
L"startaudiocall”;

Parameters

meetingPasswordParam = L"meetingpassword";
meetingIDParam = L"meetingid";

API Documentation 5/25

https://go.blizz.com/
https://go.blizz.com/startmeeting
https://go.blizz.com/startmeeting/sharescreen
https://go.blizz.com/startmeeting/videocall
https://go.blizz.com/startmeeting/audiocall

blhizz

Introduction by TeamViewer

The TeamViewer REST API

The TeamViewer APl is a REST API which uses the already existing
HTTP methods to create (POST), read (GET), change (PUT) or delete
(DELETE) single items or a collection of items. The following table
shows the general use cases for these HTTP methods.

GET POST PUT DELETE

Collection retrieve list create new - -
of items in item in this
this collec- collection

tion
Single item retrieve - changes deletes this
item data the item item

The basic URI scheme for all API functions is:
https://host/path/to/rsources[/id][/verb][?paraml=valuel]

The TeamViewer API can be found at

N

Parameters in the URI are only allowed for GET and DELETE. Gener-
ally, there should be no need for any parameters for DELETE, though.
POST and PUT need to have the parameters in the body formatted as
JSON or XML.

IDs

IDs are prefixed with a type in order to make them more distinguisha-
ble. The following types are used:

= "m" - meeting ID

API Documentation 6/25

https://webapi.teamviewer.com/

blhizz

Introduction by TeamViewer

Date format

All dates and times follow the ISO 8601. They should have the follow-
ing format: YYYY-MM-DD"T"HH:MM:SS"Z". Times are always in UTC un-
less stated otherwise.

Example

2013-02-21T13:42:55Z = 21st February 2013, 13:42:55 UTC

Number format

Decimal numbers are returned in US English format, using a point as
decimal separator. Digits are never grouped by a delimiter.

Example

12345.67

Rate limits

The rate limit is set to 300 requests per hour. Rate limits apply per
access token per API call.

API Documentation 7/ 25

blizz

OAuth 2.0 Authorization by TeamViewer

OAuth 2.0 Authorization

Roles & Terms

For more information about OAuth 2.0, see http:.//oauth.net/2/ and
the official specification at http://tools.ietf.ora/html/rfc6/749

Names used by the RFC and their meaning for the TeamViewer API:

= resource owner - The user behind a TeamViewer account who
wants to access their resources through the API.

= resource server - Our servers where the API runs.

= client - The application, plug-in, script or user who is making the
API HTTP requests.

= authorization server - In our case that's the same servers that run
the rest of the API.

= client ID - A unique ID to identify the application that wants to
use the TeamViewer API.

= client secret - A unique string only known to the creator of the
client ID.

= authorization code - Code used during the OAuth process to
prove that an authorization request was granted in the Manage-
ment Console.

= access token - A token that has to be used to access any API
function (except those explicitly marked as not requiring any ac-
cess tokens).

- refresh token - A token that can be used once to obtain a new ac-
cess token and a new refresh token.

API Documentation 8/25

http://oauth.net/2/
http://tools.ietf.org/html/rfc6749

blhizz

OAuth 2.0 Authorization by TeamViewer

Registering an application in the Management
Console

Before using any API functionality, you need to register an application
in the TeamViewer Management Console
(https://login.teamviewer.com/LogOn).

When you register the application, you must specify if you want to
use it for your own account only (private application, also referred to
as “Script”) or if you want to create an application to be used by any
TeamViewer or Blizz user (public application, also referred to as

"App”).

In both cases you also specify if the application will have access to the
data of one single account or to the data of the entire company.

Client/Application-Types

Script App

User Access Access token is created Client ID is created when
that can only be used creating the application.
to access the user who The Client ID can be used
created the application. with OAuth to create an

access token for the user
granting access.

When you register an application for your own use only, you will get
an access token that can be used directly for any API function that re-
quires it. When you register the application for others to use as well,
you will get a Client ID. This Client ID is used in the OAuth process de-
scribed below. At the end of this process the application will also have
an access token that must be used by the other API functions. This ac-
cess token is tied to the account/company that uses the application,
not the company that created the application.

API Documentation 9/25

https://login.teamviewer.com/LogOn

blhizz

OAuth 2.0 Authorization by TeamViewer

Access Token Permissions and Scopes

Access tokens have several permissions attached to them. This is
called the scope of the access token.

The following table shows all available scopes.

Scopes

Account.Create, Account.Read, Ac-
count.ReadEmail, Account.ReadEmaillicense
Account.Modify, Account.ModifyEmail, Ac-
count.ModifyPassword

Groups.Create, Groups.Read, Groups.Modify,
Groups.Share, Groups.Delete

Users.CreateUsers, Users.CreateAdministra-
tors, Users.Read, Users.ModifyUsers, Us-
ers.ModifyAdministrators

Sessions.Create, Sessions.ReadAll, Ses-
sions.ReadOwn, Sessions.ModifyAll, Ses-
sions.ModifyOwn

Connections.Read, Connections.Modify, Con-
nections.Delete

Meetings.Create, Meetings.Read, Meet-
ings.Modify, Meetings.Delete

ContactList.Create, ContactList.Read, Con-
tactList.Modify, ContactList.Delete

API Documentation 10 / 25

blhizz

OAuth 2.0 Authorization by TeamViewer

The authorization process

When using private Script Tokens, there is no need for an authoriza-
tion process. Access to the account/company data through the
TeamViewer API is defined when creating the token. The data that is
accessed is the account or company data of the user creating the to-
ken. Note that a Script Token is still valid after changing the user’s
password.

For public apps, the case is different. Because these applications can
be used by other TeamViewer users, access to their data is controlled
via OAuth 2.0. We distinguish between application with access to user
level data and company level data.

User level access

If a user starts an app that requires user level access for the first time,
TeamViewer will ask the user to grant a set of permissions to the app.
This set of permissions was specified when creating the application.
The permissions are checked against the rights of the current user. If
the application asks for permissions that exceed the rights of the user
(e. g. the application wants to edit connection report entries whereas
the user is only allowed to view them), the permissions in question are
highlighted and a warning is displayed that some parts of the applica-
tion may not behave as intended because of the lacking user rights.

In any case, the user may either choose to deny or to grant access to
the application. If access is granted, the app can access the user’s
data, as long as the user’s permissions allow. If user rights are changed
later, the application may be able to access more data.

API Documentation n/25

blhizz

OAuth 2.0 Authorization by TeamViewer

Authorization Endpoint

Requests to the authorization endpoint must be made via HTTPS. The
authorization endpoint is used to interact with the resource owner
and therefore must be viewed in a browser.

Security best practice is to open the authorization endpoint in a
popup with address bar visible.

Parameters

response_type - Must be

client_id - Client ID, a unigue string that identifies the applica-
tion.

redirect_uri - URI of the redirection endpoint. The client is redi-
rected to this URI once access has been granted. The value of this
parameter must match the registered redirect URI.

state - Can be set if needed, and will be returned to the
callback URI if it was set here.

display - Must be

Redirection Endpoint

The client is redirected to the redirection endpoint, which is specified
when creating an application in Management Console, after the inter-
action with the authorization endpoint is completed. Values added to
the redirect_uri:

- Code that can be used to get an access token.
- same as the one provided as parameter.

Description

Requests an authorization code from the server. This code is only
valid for 10 minutes and should be used to obtain an access token.
This is the only function that should not be called directly from a 3™
party application but it should be opened in a browser where the user
can grant access to the 39 party application.

API Documentation 12/ 25

blhizz

OAuth 2.0 Authorization by TeamViewer

Example

GET login.teamviewer.comoauth2/authorize?re-
sponse_type=code&client_1i1d=12333-133Ea4Hdf3e9ec0543fX&re-
direct_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb

POST /api/vl/oauth2/token (token endpoint)

Parameters

Parameters must be inside the body of the request and encoded with
the "application/x-www-form-urlencoded” format. This is the only ex-
ception where the body is not JSON or XML. There are two different
requests for this URI, one to retrieve an access token using an au-
thorization code and one using a refresh token.

Authorization-Code Grant:

= grant_type - Must be authorization code.

= code - Authorization code acquired from the /oauth2/authorize
page.

= redirect_uri- Must be the same value as in the previous call to
/oauth2/authorize.

= client_id - Client ID, a unique string that identifies the applica-
tion.

= client_secret - The client secret, which is known only to the cre-
ator of the application.

Refresh-Token:

= grant_type - Must be refresh_token,.

refresh_token - Refresh-token from a previous call.

= client_id - Client ID, a unigue string that identifies the applica-
tion.

= client_secret - The client secret, a unique string known only to
the creator of the application.

!

Return values

= access_token - Access token to use with all further API calls.

= token_type - Authentication-method used for this access token,
currently only bearer is used.

= expires_in - Time in seconds until the access token expires and
needs to be refreshed.

API Documentation 13 /25

blhizz

OAuth 2.0 Authorization by TeamViewer

= refresh_token - Refresh-Token that needs to be used to get a
new access token when the old access token expires. Requesting
a new access token will also create a new refresh token. The re-
fresh token becomes invalid after use or if the access token is re-
voked.

Description

Requests a new access token, either by using the code from a previ-
ous authorization step or by using an existing refresh token. Access
tokens have a limited lifetime of 1 day. The response always has the
Cache-Control and Pragma fields (see example below). Refresh to-
kens can only be used once. For this request the Content-Type header
should be set to application/x-www-form-urlencoded (as per OAuth 2
specification), however JSON/XML also works.

Example

Request (Authorization code grant):

POST /api/vl/oauth2/token HTTP/1.1
Host: webapi.teamviewer.com
Content-Type: application/x-www-form-urlencoded

grant_type=authoriza-
tion_code&code=Splx10BeZQQYbYS6WXxSb&redi -
rect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb&cli-
ent_id=12333-133Ea4Hdf3e9ec0543fX

Response (Authorization code grant):

HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: no-store
Pragma: no-cache

{"access_token":"54213-2YotnFZFEjrlzCsicMWp",
"token_type":"bearer",
"expires in":3600,
"refresh_token":"12854-zv3JOkFOXG5Qx2T1KWIA"}

API Documentation 14 /25

blhizz

OAuth 2.0 Authorization by TeamViewer

Requests using the access token
All APl requests need to include the "Authorization” header if the API
function requires an access token.

Example

GET /api/vl/users HTTP/1.1
Host: webapi.teamviewer.com
Authorization: Bearer 54213-2YotnFZFEjrlzCsicMwWp

All examples in the following sections will have this header omitted
but if an access token is required the Authorization header field
needs to be added to the request.

If no access token is given in the header, or the access token is past its
expiration date, the return will have a WWW-Authenticate header
field.

Response for no access token, but access token required:
HTTP/1.1 401 Unauthorized

WWW-Authenticate: Bearer
Response for expired access token:

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Bearer

{ "error" : "token_expired",
"error_code" : 1,
"error_description" : "The access token expired" }

POST /api/vl/oauth2/revoke

Parameters

None

Return values

None

API Documentation 15/ 25

blhizz

OAuth 2.0 Authorization by TeamViewer

Description

Revokes an access token that was created using oauth. The access to-
ken must be included in the header Authorization field. After revoking
it, it and its attached refresh token cannot be used any longer.

Example

Request:

POST /api/vl/oauth2/revoke HTTP/1.1
Host: https://webapi.teamviewer.com
Authorization: Bearer 54213-2YotnFZFEjrlzCsicMwWp

Response:

HTTP/1.1 200 OK

API Documentation 16 / 25

blizz

API| Functions by TeamViewer

API Functions

Ping

GET /api/v1/ping

Parameters

None

Return values

= token_valid - Is set to true if the provided access token is OK and
the message is signed correctly. In all other cases, the value is set
to false.

Authentication

Access tokens are optional but will be verified if provided. Scope: None
required.

Description

This function can be used to check if the APl is available. It can also be
used to verify if the token is valid.

Example

Request:

GET /api/vl/ping

Response:

HTTP/1.1 200 OK
Content-Type: application/json

{"token_valid":false}

API Documentation 17/ 25

blhizz

API Functions by TeamViewer
Meetings
Parameters

from_date - First start date for all listed meetings. Date

is included in the filter. Only the date counts. If a time is provided
in the parameter it will be ignored.

to_date - Last start date for all listed meetings. Date is
included in the filter. Only the date counts. If a time is provided in
the parameter it will be ignored.

Return values

id - The unique meeting ID.

subject - The subject of the meeting.

start - The start date and time of the meeting.

end - The end date and time for the meeting.

password - The meeting password. Omitted if no pass-
word is set.

participant_web_link - A web link to join the meeting.

Authentication

User access token. Scope: Meetings.Read.

Description

Lists all scheduled meetings for the account associated with the au-
thentication token. The list can be filtered with additional parameters.
This data is the same as when using GET /meetings/<mID> for each of
these users.

Example

Request

GET /api/vl/meetings/blizz

API Documentation 18/ 25

blizz

API| Functions by TeamViewer

Response

HTTP/1.1 200 OK
Content-Type: application/json

"meetings": [
{
"id": "m12-345-678",
"subject": "Blizz API Webinar",
"start": "2017-11-25T14:00:007",
"end": "2017-11-25T15:00:00Z",
"password": "1234",
"participant_web_link":
"https://go.blizz.com/m12345678"
})
{
"id": "m98-765-432",
"subject": "API Next Steps"”,
"start": " 2017-11-25T14:00:00Z2",
"end": "2017-11-25T15:00:00Z ",
"participant_web_link":
"https://go.blizz.com/m98765432"
}

GET /api/vl/meetings/blizz/<mID> (get details of a meet-
ing)
Parameters

None

Return values

id - The unigue meeting ID.

subject - The subject of the meeting.

start - The start date and time of the meeting.
end - The end date and time for the meeting.

11 11

API Documentation 19/ 25

blhizz

API Functions by TeamViewer
= password - The meeting password. Omitted if no pass-
word is set.

= participant web link - A web link to join the meeting.

Authentication

User access token. Scope: Meetings.Read.

Description

Retrieve the details of one single meeting.

Example

Request:

GET /api/vl/meetings/blizz/ml12-345-678

Response:

HTTP/1.1 200 OK
Content-Type: application/json

"id": "ml12-345-678",
"subject": "Blizz API Webinar",
"start": "2017-11-25T14:00:00Z",
"end": "2017-11-25T15:00:007",
"password": "1234",
"participant_web_link":
"https://go.blizz.com/m12345678"
}

POST /api/vl/meetings/blizz (create a new meeting)

Parameters

subject - Subject of the meeting.

start - Start date and time.

end - End date and time.

password - A password that participants must enter to
join the meeting.

11 11

API Documentation 20/ 25

blhizz

API Functions by TeamViewer

Return values

= id - The unigue meeting ID.

= subject - Subject of the meeting. Omitted for instant
meetings.

= start - The start date and time of the meeting. Omitted
for instant meetings.

= end - The end date and time for the meeting. Omitted
for instant meetings.

= password - The meeting password. Omitted if no pass-
word is set.

= participant_web_link - A web link to join the meeting.

Authentication

User access token. Scope: Meetings.Create.

Description

Creates a new meeting. The response contains the values for the new
meeting.

Example for a scheduled meeting

Request

POST /api/vl/meetings/blizz
Content-Type: application/json

{
"subject": "Blizz API Webinar",
"start": "2017-11-25T14:00:00Z",
"end": "2017-11-25T15:00:00Z",
"password": "1234",

}

API Documentation 21/ 25

blhzZ

API Functions by TeamViewer

Response

API Documentation 22/ 25

blizz

Errors by TeamViewer

HTTP response codes

200 - OK: Used for successful GET, POST and DELETE.

204 - No Content: Used for PUT to indicate that the update suc-
ceeded, but no content is included in the response.

400 - Bad Request: One or more parameters for this function is ei-
ther missing, invalid or unknown. Details should be included in the
returned JSON.

401 - Unauthorized: Access token not valid (expired, revoked, ...)
or not included in the header.

403 - Forbidden / Rate Limit Reached: IP blocked or rate limit
reached.

500 - Internal Server Error: Some (unexpected) error on the server.
The same request should work if the server works as intended.

JSON error responses

If there is an error while processing a request, the API server returns a
4xx/5xx HTTP status code with a JSON in the body with the following
parameters:

-

-

error - A short string describing the category of error.
error_description - A longer string containing a human readable
error message.

error_code - A number that is unique for each type of error.
error_signature - A number that we can use to find the
log entry if there is one. This should be unigue for every time an
error happens. The parameter may be omitted if there was nothing
logged.

Valid values for the error field are:

API Documentation 23 /25

blhizz

Errors by TeamViewer

invalid_request - The request is missing a required parameter, in-
cludes an unsupported parameter or parameter value, repeats the
same parameter, uses more than one method for including an ac-
cess token, or is otherwise malformed. Should be used with HTTP
response code 400.

invalid_token - The access token provided is revoked, mal-
formed, or invalid. Should be used with HTTP response code 401
(Unauthorized).

internal_error - There was an error while processing the request.
The error was caused by an error on our servers that should not
happen and can indicate some problems at our end. Error code
and signature can be used to debug the error. Should be used
with HTTP status code 500 (Internal Server Error).

blocked - The request was blocked. That should only happen
when the IP was blocked.

rate_limit_reached - Too many calls to a single function with the
same access token.

token_expired - Access token is expired. A new access token
needs to be requested.

invalid_client - Client ID was invalid.

email_in_use - Returned during account creation or when chang-
ing the email if the email is already used by another account.

invalid_request and invalid_token are taken from

(with the exception that they are not included in the WWW-Authenti-
cate header field but the returned JSON).

API Documentation 24 /25

http://self-issued.info/docs/draft-ietf-oauth-v2-bearer.html#resource-error-codes
http://self-issued.info/docs/draft-ietf-oauth-v2-bearer.html#resource-error-codes

blhzZ

Contact by TeamViewer

If you have questions or feedback, please visit
https://www.teamviewer.com/ticket.

API Documentation 25/ 25

https://www.teamviewer.com/ticket

