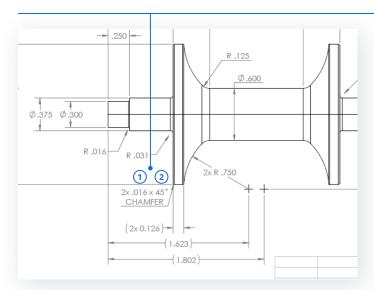
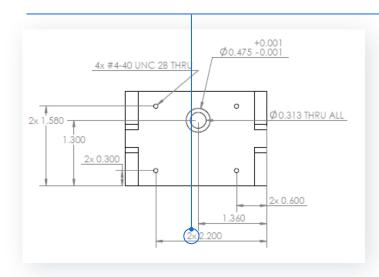

Understanding Ballooned Drawings

When ballooning, features may require to be broken down into several balloons


The example shown will require two tools/methods to complete inspection for the features

- 1. Chamfer length
- 2. Chamfer angle


This dimensional requirement would be converted into (2) ballooned features

The distance (.016) seen as **balloon 1** The angle (45°) seen as **balloon 2**

The circled data is stated to be a repeated feature (2) times.

- What does this look like on a formal inspection report?
- What does this look like on a FAIR

Formal Inspection

When the drawing calls the feature to be iterated, the **feature can be** documented under one balloon

The min and max result of all the features will auto-populate as the sample results are entered.

FAIR

Balloon:	Zone:	Qty:	Feature:	<u>Requirement:</u>	Results:	Measurement Tool Type & ID # :	Non-Conformance Number:	<u>Notes:</u>
1.1	A1	1	2.2	±.005"	2.198	Gage Pin .0849, Calipers C101		
1.2	A1	1	2.2	±.005"	2.203	Gage Pin .0849, Calipers C101		

When the drawing calls the feature to be duplicated, the **inspection document must sub-bullet** the duplications to be **identified individually**

The inspection document must identify each iteration of the features a sub-balloon (eg. 1.1,1.2,1.3)