
Inland Starter kit

http://wiki.keyestudio.com/index.php/File:Libraries_1.png�

Install Arduino IDE and Driver
（1）Installing Arduino IDE

When we get control board, we need to download Arduino IDE

and driver firstly.

You could download Arduino IDE from the official website

https//www.arduino.cc/, click the SOFTWARE on the browse

bar, click “DOWNLOADS” to enter download page, as shown

below

There are various versions Of IDE for Arduino, just download a

version that compatible with your system, here we will show

you how to download and install the windows version Arduino

IDE.

https://www.arduino.cc/

There are two versions of IDE for WINDOWS system, you can

choose between the Installer (.exe) and the Zip packages. We

suggest you use the first one that installs directly everything

you need to use the Arduino Software (IDE), including the

drivers. With the Zip package you need to install the drivers

manually. The Zip file is also useful if you want to create a

portable installation.

You just need to click JUST DOWNLOAD.

（2） V4.0 Development Board

We need to know V4.0 development board, as a core of this

kit.

 V4.0 development board is an Arduino board, which is based

on ATmega328P MCU, and with a cp2102 Chip as a UART-to-

USB converter.

It has 14 digital input/output pins (of which 6 can be used as

PWM outputs), 6 analog inputs, a 16 MHz quartz crystal, a US

B connection, a power jack, 2 ICSP headers and a reset button

.

It contains everything needed to support the microcontroller;

 simply connect it to a computer with a USB cable or power it

via an external DC power jack (DC 7-12V) or via female heade

rs Vin/ GND(DC 7-12V) to get started.

Microcontroller ATmega328P-PU

Operating Voltage 5V

Input Voltage (recommended) DC7-12V

Digital I/O Pins

14 (D0-D13)

 (of which 6 provide PWM

output)

PWM Digital I/O Pins 6 (D3, D5, D6, D9, D10, D11)

Analog Input Pins 6 (A0-A5)

DC Current per I/O Pin 20 mA

DC Current for 3.3V Pin 50 mA

Flash Memory

32 KB (ATmega328P-PU) of

which 0.5 KB used by

bootloader

SRAM 2 KB (ATmega328P-PU)

EEPROM 1 KB (ATmega328P-PU)

Clock Speed 16 MHz

LED_BUILTIN D13

（4）Installing V4.0 board Driver

Let’s install the driver of V4.0 board. The USB-TTL chip on

V4.0 board adopts CP2102 serial chip. The driver program of

this chip is included in Arduino 1.8 version and above, which is

convenient. Plug on USB port of board, the computer can

recognize the hardware and automatically install the driver of

CP2102.

If you install unsuccessfully, or you intend to install manually,

open the device manager of computer. Right click

Computer----- Properties----- Device Manager

There is a yellow exclamation mark on the page, which implies

installing unsuccessfully. Then we double click the hardware

and update the driver.

Click“OK”to enter the following page, click“browse my

computer for updated driver software”, find out the

installed or downloaded ARDUINO software. As shown

below

There is a DRIVERS folder in Arduino software installed

package（ ）, open driver folder and you can

see the driver of CP210X series chips.

Click “Browse”, then find out the driver folder, or you could

enter “driver” to search in rectangular box, then click

“next”, the driver will be installed successfully. (Place

Arduino software folder on the desktop)

Open device manager, we will find the yellow exclamation

mark disappear. The driver of CP2102 is installed

successfully.

（5）Arduino IDE Setting

Click icon, open Arduino IDE.

To avoid the errors when uploading the program to the board,

you need to select the correct V4.0 Board or MEGA 2650 Board

that matches the board connected to your computer.

Then come back to the Arduino software, you should click

Tools→Board, select the board. (as shown below)

Then select the correct COM port (you can see the

corresponding COM port after the driver is successfully

installed)

Before uploading the program to the board, let’s demonstrate

the function of each symbol in the Arduino IDE toolbar.

A- Used to verify whether there is any compiling mistakes or

not.

B- Used to upload the sketch to yourV4.0 Board or MEGA 2650

Board*1 .

C- Used to create shortcut window of a new sketch.

D- Used to directly open an example sketch.

E- Used to save the sketch.

F- Used to send the serial data received from board to the

serial monitor.

（6）Start First Program

Open the file to select Example, choose BLINK from BASIC, as

shown below

Set board and COM port, the corresponding board and COM

port are shown on the lower right of IDE.

Click to start compiling the program, check errors.

Click to upload the program, upload successfully.

Upload the program successfully, the onboard LED lights on

for 1 second, lights off for 1 second. Congratulations, you

finished the first program.

How to Add a Library?

What are Libraries ?

Libraries are a collection of code that makes it easy for you to

connect to a sensor,display, module, etc.

https://www.arduino.cc/en/Reference/Libraries

For example, the built-in LiquidCrystal library helps talk to LCD

displays. There are hundreds of additional libraries available

on the Internet for download.

The built-in libraries and some of these additional libraries are

listed in the reference.

How to Install a Library?
Here we will introduce the most simple way for you to add

libraries.

Step 1: After downloading the Arduino IDE, you can right-click

the icon of Arduino IDE.

Find the option "Open file location" shown as below

Step 2: Enter it to find libraries folder, this folder is the library

file of Arduino.

http://wiki.keyestudio.com/index.php/File:Libraries_1.png

Step 3: Next to find the“libraries”folder of this kit

You just need to replicate and paste above libraries into the

libraries folder of Arduino IDE.

Then the libraries of this kit are installed successfully, as shown

below

Project Details

Project 1: Hello World

1）Introduction

As for starters, we will begin with something simple. In this project, you only need

an Arduino and a USB cable to start the "Hello World!" experiment.

This is a communication test of your Arduino and PC, also a primer project for you

to have your first try of the Arduino world!

2）Hardware required

1. V4.0 Board or MEGA 2650 Board x1

2. USB cable x1

3）Sample program

After installing driver for Arduino, let's open Arduino software and compile code

that enables Arduino to print "Hello World!" under your instruction.

Of course, you can compile code for Arduino to continuously echo "Hello World!"

without instruction.

A simple If () statement will do the instruction trick. With the onboard LED

connected to pin 13, we can instruct the LED to blink first when Arduino gets an

instruction and then prints "Hello World!”.

//

int val;//define variable val

int ledpin=13;// define digital interface 13

void setup()

{

 Serial.begin(9600);// set the baud rate at 9600 to match the software set up. When connected

to a specific device, (e.g. bluetooth), the baud rate needs to be the same with it.

 pinMode(ledpin,OUTPUT);// initialize digital pin 13 as output. When using I/O ports on an

Arduino, this kind of set up is always needed.

}

void loop()

{

 val=Serial.read();// read the instruction or character from PC to Arduino, and assign them to

Val.

 if(val=='R')// determine if the instruction or character received is “R”.

 { // if it’s “R”,

 digitalWrite(ledpin,HIGH);// set the LED on digital pin 13 on.

 delay(500);

digitalWrite(ledpin,LOW);// set the LED on digital pin 13 off. delay(500);

 Serial.println("Hello World!");// display“Hello World！”string.

 }

}

//

4）Result Show

Done compiling and uploading the code, click to open serial port monitor and set

the baud rate to 9600.

Enter an “R” and click Send.

LED 13 will blink once, and your PC will receive information from Arduino: Hello

World.

Now, the experiment is complete. So easy!

Note: if upload fails, check whether you selected the correct Board and Port in

Tools.

Project 2: LED blinking

1）Introduction

Blinking LED experiment is quite simple. In the "Hello World!" program, we have

come across LED. This time, we are going to connect an LED to one of the digital

pins rather than using the built-in LED13 of V4.0 Board or MEGA 2650 Board. Except

an Arduino and an USB cable, we will need extra parts below.

2）Hardware required

1. V4.0 Board or MEGA 2650 Board *1

2. Red M5 LED*1

3. 220Ω resistor*1

4. Breadboard*1

5. USB cable *1

6. Jumper wire* 2

We follow the connection diagram below to connect the components.

Here we use digital pin 10. We connect LED to a 220ohm resistor to avoid high

current damaging the LED.

3）Connection for V4.0:

Connection for 2560 R3:

4）Sample program

//

int ledPin = 10; // define digital pin 10.

void setup()

{

pinMode(ledPin, OUTPUT);// define pin with LED connected as output.

}

void loop()

{

digitalWrite(ledPin, HIGH); // set the LED on.

delay(1000); // wait for a second.

digitalWrite(ledPin, LOW); // set the LED off.

delay(1000); // wait for a second

}

//

5）Test Result

After downloading this program, in the experiment, you will see the LED connected

to pin 10 turning on and off, with an interval approximately one second.

The blinking LED experiment is now completed. Thank you!

Project 3: PWM

1）Introduction

PWM, short for Pulse Width Modulation, is a technique used to encode analog

signal level into digital ones.

A computer cannot output analog voltage but only digital voltage values such as

0V or 5V. So we use a high resolution counter to encode a specific analog signal

level by modulating the duty cycle of PMW.

The PWM signal is also digitalized because in any given moment, fully on DC power

supply is either 5V (ON), or 0V (OFF). The voltage or current is fed to the analog

load (the device that uses the power) by repeated pulse sequence being ON or

OFF. Being on, the current is fed to the load; being off, it's not.

With adequate bandwidth, any analog value can be encoded using PWM. The

output voltage value is calculated via the on and off time.

Output voltage = (turn on time/pulse time) * maximum voltage value

PWM has many applications: lamp brightness regulating, motor speed regulating,

sound making, etc.

The following are the three basic parameters of PMW:

1. The amplitude of pulse width (minimum / maximum)

2. The pulse period (The reciprocal of pulse frequency in 1 second)

3. The voltage level (such as 0V-5V)

There are 6 PMW pins onV4.0 Board or MEGA 2650 Board*1 , namely digital pin 3, 5,

6, 9, 10, and 11.

In previous experiments, we have done "button-controlled LED", using digital

signal to control digital pin.

This time, we will use a potentiometer to control the brightness of LED.

2）Hardware required

1. V4.0 Board or MEGA 2650 Board *1

2. Red M5 LED *1

3. 220Ω resistor *1

4. Breadboard *1

5. USB cable *1

6. Breadboard jumper wire * 6

3）Connection for V4.0:

Connection for 2560 R3:

4）Sample program

In the program compiling process, we will use the analogWrite (PWM interface,

analog value) function.

In this experiment, we will read the analog value of the potentiometer and assign

the value to PWM port, so there will be corresponding change to the brightness of

the LED.

One final part will be displaying the analog value on the monitor window.

You can consider this as the "analog value reading" project adding the PWM analog

value assigning part.

Below is a sample program for your reference.

//
int ledpin=11;//initialize digital pin 11（PWM output）

int val=0;// Temporarily store variables' value from the sensor

void setup()

{

pinMode(ledpin,OUTPUT);// define digital pin 11 as “output”

Serial.begin(9600);// set baud rate at 9600

// attention: for analog ports, they are automatically set up as “input”

}

void loop()

{

for(int i=0;i<255;i++)

{

analogWrite(ledpin,i);// turn on LED and set up brightness（maximum output of PWM is 255）

delay(10);// wait for 0.01 second

}

for(int i=255;i>0;i--)

{

 analogWrite(ledpin,i);// turn on LED and set up brightness（maximum output of PWM is 255）

delay(10);// wait for 0.01 second

 }

}

5）Test Result

Upload test code successfully, LED gradually changes from bright to dark, like

human’s breath, rather than turning on and off immediately.

Project 4: Traffic light

1）Introduction

In the previous program, we have done the LED blinking experiment with one LED.

Now, it’s time to up the stakes and do a bit more complicated experiment-traffic

lights. Actually, these two experiments are similar. While in this traffic lights

experiment, we use 3 LEDs with different colors rather than 1 LED.

2）Hardware required

1.V4.0 Board or MEGA 2650 Board*1

2. USB cable *1

3. Red M5 LED*1

4. Yellow M5 LED*1

5. Green M5 LED*1

6. 220Ω resistor *3

7. Breadboard*1

8. Breadboard jumper wires* several

3）Connection for V4.0:

Connection for 2560 R3:

4）Sample program

Since it is a simulation of traffic lights, the blinking time of each LED should be the

same with those in traffic lights system.

In this program, we use Arduino delay () function to control delay time, which is

much simpler than C language.

//

int redled =10; // initialize digital pin 8.

int yellowled =7; // initialize digital pin 7.

int greenled =4; // initialize digital pin 4.

void setup()

{

pinMode(redled, OUTPUT);// set the pin with red LED as “output”

pinMode(yellowled, OUTPUT); // set the pin with yellow LED as “output”

pinMode(greenled, OUTPUT); // set the pin with green LED as “output”

}

void loop()

{

digitalWrite(greenled, HIGH);//// turn on green LED

delay(5000);// wait 5 seconds

digitalWrite(greenled, LOW); // turn off green LED

for(int i=0;i<3;i++)// blinks for 3 times

{

delay(500);// wait 0.5 second

digitalWrite(yellowled, HIGH);// turn on yellow LED

delay(500);// wait 0.5 second

digitalWrite(yellowled, LOW);// turn off yellow LED

}

delay(500);// wait 0.5 second

digitalWrite(redled, HIGH);// turn on red LED

delay(5000);// wait 5 seconds

digitalWrite(redled, LOW);// turn off red LED

}

//

5）Test Result

When the uploading process is completed, you can see your own traffic light

design.

The green light will be on for 5 seconds, and then off., followed by the yellow light

blinking for 3 times, and then the red light on for 5 seconds, forming a cycle. Cycle

then repeats.

Experiment is now completed, thank you.

Note: this circuit design is very similar with the following LED chasing effect.

Project 5: LED chasing effect

1）Introduction

We often see billboards composed of colorful LEDs. They are constantly changing

to form various light effects. In this experiment, we compile a program to simulate

LED chasing effect.

2）Hardware required

1. Led *6

2. V4.0 Board or MEGA 2650 Board *1

3. 220Ω resistor *6

4. Breadboard *1

5. USB cable*1

6. Breadboard wire *13

3）Connection for V4.0:

Connection for 2560 R3:

4）Sample program

//

int BASE = 2 ; // the I/O pin for the first LED

int NUM = 6; // number of LEDs

void setup()

{

 for (int i = BASE; i < BASE + NUM; i ++)

 {

 pinMode(i, OUTPUT); // set I/O pins as output

 }

}

void loop()

{

 for (int i = BASE; i < BASE + NUM; i ++)

 {

 digitalWrite(i, LOW); // set I/O pins as “low”, turn off LEDs one by one.

 delay(200); // delay

 }

 for (int i = BASE; i < BASE + NUM; i ++)

 {

 digitalWrite(i, HIGH); // set I/O pins as “high”, turn on LEDs one by one

 delay(200); // delay

 }

}

//

5）Result

You can see the LEDs blink by sequence.

Project 6: Button-controlled LED

1）Introduction

I/O port means interface for INPUT and OUTPUT. Up until now, we have only used

the OUTPUT function.

In this experiment, we will try to use the input function, which is to read the output

value of device. We use 1 button and 1 LED using both input and output to give you

a better understanding of the I/O function.

Button switches, familiar to most of us, are a switch value (digital value) component.

When it's pressed, the circuit is in closed (conducting) state.

2）Hardware required

1. V4.0 Board or MEGA 2650 Board *1

2. Button switch *1

3. Red M5 LED *1

4. 220Ω resistor *1

5. 10KΩ resistor *1

6. Breadboard *1

7. USB cable *1

8. Breadboard jumper wire * 6

Connection for V4.0:

Connection for 2560 R3:

3）Sample program

Now, let's begin the compiling. When the button is pressed, the LED will be on.

After the previous study, the coding should be easy for you.

In this program, we add a statement of judgment. Here, we use an if () statement.

Arduino IDE is based on C language, so statements of C language such as while,

switch can certainly be used for Arduino program.

When we press the button, pin 7 will output high level. We can program pin 11 to

output high level and turn on the LED.

When pin 7 outputs low level, pin 11 also outputs low level and the LED remains off.

//

int ledpin=11;// initialize pin 11

int inpin=7;// initialize pin 7

int val;// define val

void setup()

{

pinMode(ledpin,OUTPUT);// set LED pin as “output”

pinMode(inpin,INPUT);// set button pin as “input”

}

void loop()

{

val=digitalRead(inpin);// read the level value of pin 7 and assign if to val

if(val==LOW)// check if the button is pressed, if yes, turn on the LED

{ digitalWrite(ledpin,LOW);}

else

{ digitalWrite(ledpin,HIGH);}

}

//

(4）Result

When the button is pressed, LED is on; otherwise, LED remains off. Congrats! The

button controlled LED experiment is completed.

The simple principle of this experiment is widely used in a variety of circuit and

electric appliances. You can easily come across it in your everyday life. One typical

example is when you press a certain key of your phone, the backlight will be on.

Project 7: Active buzzer

1）Introduction

Active buzzer is a sound making element, widely used on computer, printer, alarm,

electronic toy, telephone, timer, etc. It has an inner vibration source. Simply connect

it with 5V power supply, it can buzz continuously.

2）Hardware required

1. Buzzer *1

2. V4.0 Board or MEGA 2650 Board *1

3. Breadboard *1

4. USB cable *1

5. Breadboard jumper wires * 2

3）Connection for V4.0:

Connection for 2560 R3:

When connecting the circuit, pay attention to the positive and negative poles of the

buzzer. In the photo, you can see there are red and black lines. When the circuit is

finished, you can begin programming.

4）Sample program

Program is simple. You control the buzzer by outputting high/low level.

//

int buzzer=8;// initialize digital IO pin that controls the buzzer

void setup()

{

 pinMode(buzzer,OUTPUT);// set pin mode as “output”

}

void loop()

{

digitalWrite(buzzer, HIGH); // produce sound

}

//

5）Result

After downloading the program, the buzzer experiment is completed.

You can hear the buzzer is ringing.

Project 8: Passive buzzer

1）Introduction

We can use Arduino to make many interactive works of which the most commonly

used is acoustic-optic display.

All the previous experiment has something to do with LED. However, the circuit in

this experiment can produce sound. Normally, the experiment is done with a buzzer

or a speaker while buzzer is simpler and easier to use.

The buzzer we introduced here is a passive buzzer. It cannot be actuated by itself,

but by external pulse frequencies. Different frequencies produce different sounds.

We can use Arduino to code the melody of a song, which is quite fun and simple.

2）Hardware required

 Passive buzzer*1

 V4.0 Board or MEGA 2650 Board *1

 Breadboard*1

 USB cable *1

 Breadboard jumper wire * 2

3）Connection for V4.0:

Here we connect the passive buzzer to digital pin 8.

Connection for 2560 R3:

4）Sample program

//

int buzzer=8;// select digital IO pin for the buzzer

void setup()

{

pinMode(buzzer,OUTPUT);// set digital IO pin pattern, OUTPUT to be output

}

void loop()

{ unsigned char i,j;//define variable

while(1)

{ for(i=0;i<80;i++)// output a frequency sound

{ digitalWrite(buzzer,HIGH);// sound

delay(1);//delay1ms

digitalWrite(buzzer,LOW);//not sound

delay(1);//ms delay

}

for(i=0;i<100;i++)// output a frequency sound

{

digitalWrite(buzzer,HIGH);// sound

digitalWrite(buzzer,LOW);//not sound

delay(2);//2ms delay

}

}

}

//

5）Result

After downloading the program, buzzer experiment is finished. You can hear the

buzzer beep.

Project 9: Photo Resistor

1）Introduction

After completing all the previous experiments, we acquired some basic

understanding and knowledge about Arduino application. We have learned digital

input and output, analog input and PWM. Now, we can begin the learning of

sensors applications.

Photo-Resistor (Photovaristor) is a resistor whose resistance varies according to

different incident light strength.

It's made based on the photoelectric effect of semiconductor. If the incident light is

intense, its resistance reduces; if the incident light is weak, the resistance increases.

Photovaristor is commonly applied in the measurement of light, light control and

photovoltaic conversion (convert the change of light into the change of electricity).

Photo resistor is also being widely applied to various light control circuits, such as

light control and adjustment, optical switches, etc.

We will start with a relatively simple experiment regarding photovaristor

application.

Photovaristor is an element that changes its resistance as light strength changes.

So we will need to read the analog values. We can refer to the PWM experiment,

replacing the potentiometer with photovaristor. When there is change in light

strength, there will be corresponding change on the LED.

2）Hardware required

1. Photo-resistor sensor *1

2. V4.0 Board or MEGA 2650 Board*1

3. Red M5 LED *1

4. 10KΩ resistor *1

5. 220Ω resistor *1

6. Breadboard *1

7. USB cable *1

8. Breadboard jumper wire * 5

3）Connection for V4.0:

Connection for 2560 R3:

4）Sample program

After the connection, let's begin the program compiling. The program is similar to

the one of PWM. For change detail, please refer to the sample program below.

//

int potpin=0;// initialize analog pin 0, connected with photovaristor

int ledpin=11;// initialize digital pin 11, output regulating the brightness of LED

int val=0;// initialize variable val

void setup()

{

pinMode(ledpin,OUTPUT);// set digital pin 11 as “output”

Serial.begin(9600);// set baud rate at “9600”

}

void loop()

{

val=analogRead(potpin);// read the analog value of the sensor and assign it to val

Serial.println(val);// display the value of val

analogWrite(ledpin,val);// turn on the LED and set up brightness（maximum output value 255）

delay(10);// wait for 0.01

}

//

5）Result

After downloading the program, you can change the light strength around the

photovaristor and see corresponding brightness change of the LED.

Photovaristors has various applications in our everyday life. You can make

other interesting interactive projects base on this one.

Project 10: Flame sensor

1）Introduction

Flame sensor (Infrared receiving triode) is specially used on robots to find the fire

source. This sensor is of high sensitivity to flame. Below is a photo of it.

2）Working principle:

Flame sensor is made based on the principle that infrared ray is

highly sensitive to flame. It has a specially designed infrared

receiving tube to detect fire, and then convert the flame brightness

into fluctuating level signal. The signals are then input into the

central processor and be dealt with accordingly.

3）Sensor connection

The shorter lead of the receiving triode is for negative, the other one for positive.

Connect negative to 5V pin, positive to resistor; connect the other end of the

resistor to GND, connect one end of a jumper wire to a clip which is electrically

connected to sensor positive, the other end to analog pin. As shown below:

4）Hardware required

1. Flame sensor *1

2. V4.0 Board or MEGA 2650 Board*1

3. Buzzer *1

4. 10K resistor *1

5. USB cable *1

6. Breadboard jumper wire * 6

5）Connection for V4.0:

Connecting buzzer:

Connect the buzzer to digital pin 8.

Connecting flame sensor:

Connect the flame sensor to analog pin 0.

Connection for 2560 R3:

Experiment principle

When it's approaching a fire, the voltage value read from the analog port differs.

If you use a multimeter, you can know when there is no fire approaching, the

voltage it reads is around 0.3V; when there is fire approaching, the voltage it reads

is around 1.0V. The nearer the fire, the higher the voltage is.

So in the beginning of the program, you can initialize voltage value i (no fire value);

Then, continuously read the analog voltage value j and obtain difference

value k=j-i; compare k with 0.6V (123 in binary) to determine whether there is a fire

approaching or not; if yes, the buzzer will buzz.

6）Sample program

//

int flame=0;// select analog pin 0 for the sensor

int Beep=9;// select digital pin 9 for the buzzer

int val=0;// initialize variable

 void setup()

{

 pinMode(Beep,OUTPUT);// set LED pin as “output”

 pinMode(flame,INPUT);// set buzzer pin as “input”

 Serial.begin(9600);// set baud rate at “9600”

 }

void loop()

{

 val=analogRead(flame);// read the analog value of the sensor

 Serial.println(val);// output and display the analog value

 if(val>=600)// when the analog value is larger than 600, the buzzer will buzz

 {

 digitalWrite(Beep,HIGH);

 }else

 {

 digitalWrite(Beep,LOW);

 }

 delay(500);

}

//

7）Result

This program can simulate an alarm when there is a fire.

Everything is normal when there is no fire; but when there is a fire, the alarm will be

set off immediately.

Project 11: LM35 temperature sensor

1）Introduction

LM35 is a common and easy-to-use

temperature sensor. It does not require

other hardware. You just need an analog

port to make it work. The difficulty lies

in compiling the code to convert the

analog value it reads into Celsius temperature.

2）Hardware required

1. LM35*1

2. V4.0 or MEGA 2650 Board*1

3. Breadboard*1

4. USB cable *1

5. Breadboard jumper wire *5

3）Connection for V4.0:

Connection for 2560 R3:

4）Sample program

//

int potPin = 0; // initialize analog pin 0 for LM35 temperature sensor

void setup()

{

Serial.begin(9600);// set baud rate at”9600”

}

void loop()

{

int val;// define variable

int dat;// define variable

val=analogRead(0);// read the analog value of the sensor and assign it to val

dat=(125*val)>>8;// temperature calculation formula

Serial.print("Tep:");// output and display characters beginning with Tep

Serial.print(dat);// output and display value of dat

Serial.println("C");// display “C” characters

delay(500);// wait for 0.5 second

}

//

5）Result

After downloading the program, you can open the monitoring window to see

current temperature.

Project 12: Ball tilt switch

1）Introduction

This lesson let’s use a ball tilt switch to control the ON and OFF of LED

2）Hardware required

1. Ball switch*1

2. V4.0 Board or MEGA 2650 Board*1

3. Led *1

4. 220Ω resistor*1

5. 10KΩ resistor*1

6. USB cable *1

7. Breadboard jumper wire *5

3）Connection for V4.0:

Connect the ball tilt switch, LED and resistors to control board. Connect the LED to

digital pin 8, ball switch to analog pin 5.

Connection for 2560 R3:

Experiment principle

When one end of the switch is below horizontal position, the switch is on. The

voltage of the analog port is about 5V (1023 in binary). The LED will be on.

When the other end of the switch is below horizontal position, the switch is off. The

voltage of the analog port is about 0V (0 in binary). The LED will be off.

In the program, we determine whether the switch is on or off according to the

voltage value of the analog port, whether it's above 2.5V (512 in binary) or not.

4）Sample program

//

void setup()

{

 pinMode(8,OUTPUT);// set digital pin 8 as “output”

}

void loop()

{

int i;// define variable i

while(1)

{

 i=analogRead(5);// read the voltage value of analog pin 5

 if(i>512)// if larger that 512（2.5V）

 {

 digitalWrite(8,LOW);// turn on LED

 }

 else// otherwise

 {

 digitalWrite(8,HIGH);// turn off LED

 }

 }

}

//

5）Test Result

Hold the breadboard with your hand. Tilt it to a certain angle, so the tiny ball inside

tilt switch is conducted, the LED will be on.

If there is no tilt, the LED will be off.

The principle of this experiment can also be applied to relay control.

Experiment completed.

Thank you!

Project 13: IR remote control

1）What is an infrared receiver?

The signal from the infrared remote controller is a series of binary pulse code.

To avoid interference from other infrared signals during the wireless transmission,

the signal is pre-modulate at a specific carrier frequency and then send out by

a infrared emission diode.

The infrared receiving device needs to filter out other wave and receives signal at

that specific frequency and modulates it back to binary pulse code, known

as demodulation.

Working principal:

The built-in receiver converts the light signal it received from the sender into feeble

electrical signal. The signal will be amplified by the IC amplifier.

After automatic gain control, band-pass filtering, demodulation, wave shaping, it

returns to the original code. The code is then input to the code identification

circuit by the receiver's signal output pin.

Pins and wiring of infrared receiver:

Infrared receiver has 3 pins. When you use it, connect VOUT to analog pin, GND to

GND, VCC to +5V.

Next, let’s move on to an infrared remote control experiment.

2）Hardware required

 V4.0 Board or MEGA 2650 Board*1

 Infrared remote controller x1

 Infrared receiver x1

 LED x6

 220Ω resistor x6

 Breadboard wire x 10

3）Connection Diagram

First, connect the V4.0 Board or MEGA 2650 Board; then connect the infrared

receiver as the above mentioned, connect VOUT to digital pin 11.

Then connect one end of each LED connected with a resistor to cathode row; the

other end of each LED to pin 2, 3, 4, 5, 6, 7.

Connection for V4.0:

Connection for 2560 R3:

Experimental principle

If you want to decode a remote controller, you must first know how it's coded. The

coding method we use here is NEC protocol. Below is a brief introduction.

·NEC protocol:

4）Features：

(1) 8 bit address and 8 bit command length

(2) address and command are transmitted twice for reliability

(3) pulse distance modulation

(4) carrier frequency of 38 KHZ

(5) bit time of 1.125ms or 2.25ms

Protocol is as below:

• Definition of logical 0 and 1 is as below

• Pulse transmitted when button is pressed and immediately released

The picture above shows a typical pulse train of the NEC protocol. With this

protocol the LSB is transmitted first. In this case Address $59 and Command $16 is

transmitted. A message is started by a 9ms AGC burst, which was used to set the

gain of the earlier IR receivers.

This AGC burst is then followed by a 4.5ms space, which is then followed by the

address and command. Address and Command are transmitted twice. The second

time all bits are inverted and can be used for verification of the received message.

The total transmission time is constant because every bit is repeated with its

inverted length.

If you are not interested in this reliability, you can ignore the inverted values, or you

can expend the Address and Command to 16 bits each!

• Pulse transmitted when button is pressed and released after a period of time

A command is transmitted only once, even when the key on the remote control

remains pressed. Every 110ms a repeat code is transmitted for as long as the key

remains down. This repeat code is simply a 9ms AGC pulse followed by a 2.25ms

space and a 560µs burst.

·Repeat pulse

Note: when the pulse enters the integrated receiver, there will be decoding, signal

amplifying and wave shaping process.

So you need to make sure the level of the output is just the opposite from that of

the signal sending end. That is when there is no infrared signal, the output end is in

high level; when there is infrared signal, the output end is in low level.

You can see the pulse of the receiving end in the oscilloscope. Try to better

understand the program base on what you see.

5）Sample program

Note：add IRremote folder into installation directory \Arduino\compiler libraries,

or else the code will not be able to compile.

For example：C:\Program Files\Arduino\libraries

///

#include <IRremote.h>

int RECV_PIN = 11;

int LED1 = 2;

int LED2 = 3;

int LED3 = 4;

int LED4 = 5;

int LED5 = 6;

int LED6 = 7;

long on1 = 0x00FFA25D;

long off1 = 0x00FFE01F;

long on2 = 0x00FF629D;

long off2 = 0x00FFA857;

long on3 = 0x00FFE21D;

long off3 = 0x00FF906F;

long on4 = 0x00FF22DD;

long off4 = 0x00FF6897;

long on5 = 0x00FF02FD;

long off5 = 0x00FF9867;

long on6 = 0x00FFC23D;

long off6 = 0x00FFB047;

IRrecv irrecv(RECV_PIN);

decode_results results;

// Dumps out the decode_results structure.

// Call this after IRrecv::decode()

// void * to work around compiler issue

//void dump(void *v) {

// decode_results *results = (decode_results *)v

void dump(decode_results *results) {

 int count = results->rawlen;

 if (results->decode_type == UNKNOWN)

 {

 Serial.println("Could not decode message");

 }

 else

 {

 if (results->decode_type == NEC)

 {

 Serial.print("Decoded NEC: ");

 }

 else if (results->decode_type == SONY)

 {

 Serial.print("Decoded SONY: ");

 }

 else if (results->decode_type == RC5)

 {

 Serial.print("Decoded RC5: ");

 }

 else if (results->decode_type == RC6)

 {

 Serial.print("Decoded RC6: ");

 }

 Serial.print(results->value, HEX);

 Serial.print(" (");

 Serial.print(results->bits, DEC);

 Serial.println(" bits)");

 }

 Serial.print("Raw (");

 Serial.print(count, DEC);

 Serial.print("): ");

 for (int i = 0; i < count; i++)

 {

 if ((i % 2) == 1) {

 Serial.print(results->rawbuf[i]*USECPERTICK, DEC);

 }

 else

 {

 Serial.print(-(int)results->rawbuf[i]*USECPERTICK, DEC);

 }

 Serial.print(" ");

 }

 Serial.println("");

 }

void setup()

 {

 pinMode(RECV_PIN, INPUT);

 pinMode(LED1, OUTPUT);

 pinMode(LED2, OUTPUT);

 pinMode(LED3, OUTPUT);

 pinMode(LED4, OUTPUT);

 pinMode(LED5, OUTPUT);

 pinMode(LED6, OUTPUT);

 pinMode(13, OUTPUT);

 Serial.begin(9600);

 irrecv.enableIRIn(); // Start the receiver

 }

int on = 0;

unsigned long last = millis();

void loop()

{

 if (irrecv.decode(&results))

 {

 // If it's been at least 1/4 second since the last

 // IR received, toggle the relay

 if (millis() - last > 250)

 {

 on = !on;

// digitalWrite(8, on ? HIGH : LOW);

 digitalWrite(13, on ? HIGH : LOW);

 dump(&results);

 }

 if (results.value == on1)

 digitalWrite(LED1, HIGH);

 if (results.value == off1)

 digitalWrite(LED1, LOW);

 if (results.value == on2)

 digitalWrite(LED2, HIGH);

 if (results.value == off2)

 digitalWrite(LED2, LOW);

 if (results.value == on3)

 digitalWrite(LED3, HIGH);

 if (results.value == off3)

 digitalWrite(LED3, LOW);

 if (results.value == on4)

 digitalWrite(LED4, HIGH);

 if (results.value == off4)

 digitalWrite(LED4, LOW);

 if (results.value == on5)

 digitalWrite(LED5, HIGH);

 if (results.value == off5)

 digitalWrite(LED5, LOW);

 if (results.value == on6)

 digitalWrite(LED6, HIGH);

 if (results.value == off6)

 digitalWrite(LED6, LOW);

 last = millis();

 irrecv.resume(); // Receive the next value

 }}

///

Program function

Decode the coded pulse signal emitted by the remote controller; execute

corresponding action according to the results of the decoding.

In this way, you will be able to control your device with remote controller.

6）Result

Project 14: 74HC595

1）Introduction

To put it simply, 74HC595 is a combination of 8-digit shifting register, memorizer

and equipped with tri-state output. Here, we use it to control 8 LEDs.

You may wonder why use a 74HC595 to control LED? Well, think about how many

I/O it takes for an Arduino to control 8 LEDs? Yes, 8.

For an Arduino, it has only 20 I/O including analog ports. So, to save port resources,

we use 74HC595 to reduce the number of ports it needs. Using 74HC595 enables

us to use 3 digital I/O port to control 8 LEDs!

The 74HC595 devices contain an 8-bit serial-in, parallel-out shift register that feeds

an 8-bit D-type storage register. The storage register has parallel 3-state outputs.

Separate clocks are provided for both the shift and storage register.

The shift register has a direct overriding clear (SRCLR) input, serial (SER) input, and

serial outputs for cascading. When the output-enable (OE) input is high, the

outputs are in the high-impedance state. Both the shift register clock (SRCLK) and

storage register clock (RCLK) are positive-edge triggered. If both clocks are

connected together, the shift register always is one clock pulse ahead of the

storage register.

2）Hardware required

 74HC595 chip*1

 V4.0 Board or MEGA 2650 Board *1

 Red M5 LED*4

 Green M5 LED*4

 220Ω resistor*8

 Breadboard*1

 USB cable *1

 Breadboard jumper wires*several

3）Circuit Connection

Note: for pin 13 OE port of 74HC595, it needs to connect to GND.

Connection for V4.0:

Connection for 2560 R3:

The circuit may seem complicated, but once you give it a good look, you will find it

easy!

4）Sample program

//

int data = 2;// set pin 14 of 74HC595as data input pin SI

int clock = 5;// set pin 11 of 74hc595 as clock pin SCK

int latch = 4;// set pin 12 of 74hc595 as output latch RCK

int ledState = 0;

const int ON = HIGH;

const int OFF = LOW;

void setup()

{

pinMode(data, OUTPUT);

pinMode(clock, OUTPUT);

pinMode(latch, OUTPUT);

}

void loop()

{

for(int i = 0; i < 256; i++)

{

updateLEDs(i);

delay(500);

}

}

void updateLEDs(int value)

{

digitalWrite(latch, LOW);//

shiftOut(data, clock, MSBFIRST, ~value);// serial data “output”, high level first

digitalWrite(latch, HIGH);// latch

}

//

5）Result

After downloading the program, you can see 8 LEDs displaying 8-bit binary

number.

Project 15: 1-digit LED display

1）Introduction

LED segment displays are common for displaying numerical information.

They are widely applied on displays of electromagnetic oven, full automatic

washing machine, water temperature display, electronic clock etc.

So it is necessary that we learn how it works.

LED segment display is a semiconductor light-emitting device. Its basic unit is a

light-emitting diode (LED).

LED segment display can be divided into 7-segment display and 8-segment

display according to the number of segments.

8-segment display has one more LED unit (for decimal point display) than

7-segment one.

In this experiment, we use a 8-segment display. According to the wiring method of

LED units, LED segment displays can be divided into display with common anode

and display with common cathode.

Common anode display refers to the one that combine all the anodes of LED units

into one common anode (COM).

For the common anode display, connect the common anode (COM) to +5V. When

the cathode level of a certain segment is low, the segment is on; when the cathode

level of a certain segment is high, the segment is off.

For the common cathode display, connect the common cathode (COM) to

GND. When the anode level of a certain segment is high, the segment is on; when

the anode level of a certain segment is low, the segment is off.

Each segment of the display consists of an LED. So when you use it, you also need

use a current-limiting resistor. Otherwise, LED will be burnt out.

In this experiment, we use a common cathode display. As we mentioned above, for

common cathode display, connect the common cathode (COM) to GND.

When the anode level of a certain segment is high, the segment is on; when the

anode level of a certain segment is low, the segment is off.

2）Hardware required

 1-digit 8-segment display *1

 220Ω resistor *8

 Breadboard *1

 V4.0 Board or MEGA 2650 Board *1

 USB cable *1

 Breadboard jumper wire * 12

3）Circuit Connection

Connection for V4.0:

Connection for 2560 R3:

4）Sample program

There are seven segments for numerical display, one for decimal point display.

Corresponding segments will be turned on when displaying certain numbers.

For example, when displaying number 1, b and c segments will be turned on.

We compile a subprogram for each number, and compile the main program to

display one number every 2 seconds, cycling display number 0 ~ 9.

The displaying time for each number is subject to the delay time, the longer the

delay time, the longer the displaying time.

Refer to the sample code below:

//

// set the IO pin for each segment

int a=7;// set digital pin 7 for segment a

int b=6;// set digital pin 6 for segment b

int c=5;// set digital pin 5 for segment c

int d=10;// set digital pin 10 for segment d

int e=11;// set digital pin 11 for segment e

int f=8;// set digital pin 8 for segment f

int g=9;// set digital pin 9 for segment g

int dp=4;// set digital pin 4 for segment dp

void digital_0(void) // display number 5

{

unsigned char j;

digitalWrite(a,HIGH);

digitalWrite(b,HIGH);

digitalWrite(c,HIGH);

digitalWrite(d,HIGH);

digitalWrite(e,HIGH);

digitalWrite(f,HIGH);

digitalWrite(g,LOW);

digitalWrite(dp,LOW);

}

void digital_1(void) // display number 1

{

unsigned char j;

digitalWrite(c,HIGH);// set level as “high” for pin 5, turn on segment c

digitalWrite(b,HIGH);// turn on segment b

for(j=7;j<=11;j++)// turn off other segments

digitalWrite(j,LOW);

digitalWrite(dp,LOW);// turn off segment dp

}

void digital_2(void) // display number 2

{

unsigned char j;

digitalWrite(b,HIGH);

digitalWrite(a,HIGH);

for(j=9;j<=11;j++)

digitalWrite(j,HIGH);

digitalWrite(dp,LOW);

digitalWrite(c,LOW);

digitalWrite(f,LOW);

}

void digital_3(void) // display number 3

{

digitalWrite(g,HIGH);

digitalWrite(a,HIGH);

digitalWrite(b,HIGH);

digitalWrite(c,HIGH);

digitalWrite(d,HIGH);

digitalWrite(dp,LOW);

digitalWrite(f,LOW);

digitalWrite(e,LOW);

}

void digital_4(void) // display number 4

{

digitalWrite(c,HIGH);

digitalWrite(b,HIGH);

digitalWrite(f,HIGH);

digitalWrite(g,HIGH);

digitalWrite(dp,LOW);

digitalWrite(a,LOW);

digitalWrite(e,LOW);

digitalWrite(d,LOW);

}

void digital_5(void) // display number 5

{

unsigned char j;

digitalWrite(a,HIGH);

digitalWrite(b, LOW);

digitalWrite(c,HIGH);

digitalWrite(d,HIGH);

digitalWrite(e, LOW);

digitalWrite(f,HIGH);

digitalWrite(g,HIGH);

digitalWrite(dp,LOW);

}

void digital_6(void) // display number 6

{

unsigned char j;

for(j=7;j<=11;j++)

digitalWrite(j,HIGH);

digitalWrite(c,HIGH);

digitalWrite(dp,LOW);

digitalWrite(b,LOW);

}

void digital_7(void) // display number 7

{

unsigned char j;

for(j=5;j<=7;j++)

digitalWrite(j,HIGH);

digitalWrite(dp,LOW);

for(j=8;j<=11;j++)

digitalWrite(j,LOW);

}

void digital_8(void) // display number 8

{

unsigned char j;

for(j=5;j<=11;j++)

digitalWrite(j,HIGH);

digitalWrite(dp,LOW);

}

void digital_9(void) // display number 5

{

unsigned char j;

digitalWrite(a,HIGH);

digitalWrite(b,HIGH);

digitalWrite(c,HIGH);

digitalWrite(d,HIGH);

digitalWrite(e, LOW);

digitalWrite(f,HIGH);

digitalWrite(g,HIGH);

digitalWrite(dp,LOW);

}

void setup()

{

int i;// set variable

for(i=4;i<=11;i++)

pinMode(i,OUTPUT);// set pin 4-11as “output”

}

void loop()

{

while(1)

{

digital_0();// display number 0

delay(1000);// wait for 1s

digital_1();// display number 1

delay(1000);// wait for 1s

digital_2();// display number 2

delay(1000); // wait for 1s

digital_3();// display number 3

delay(1000); // wait for 1s

digital_4();// display number 4

delay(1000); // wait for 1s

digital_5();// display number 5

delay(1000); // wait for 1s

digital_6();// display number 6

delay(1000); // wait for 1s

digital_7();// display number 7

delay(1000); // wait for 1s

digital_8();// display number 8

delay(1000); // wait for 1s

digital_9();// display number 9

delay(1000); // wait for 1s

}

}

//

5）Result

LED segment display will show the number from 0 to 9.

Project 16: 4-digit LED display

1）Introduction

In this experiment, we use an Arduino to drive a common anode, 4-digit,

7-segment LED display.

For LED display, current-limiting resistors are indispensable. There are two wiring

methods for Current-limiting resistor.

One is to connect one

resistor for each

anode, 4 in totals for

d1-d4 anode. An

advantage for this

method is that it

requires fewer

resistors, only 4. But it

cannot maintain consistent brightness.

Another method is to connect one resistor to each pin. It guarantees consistent

brightness, but requires more resistors.

In this experiment, we use 8 220Ω resistors (we use 220Ω resistors because no 100

Ω resistor available. If you use 100Ω, the displaying will be more brighter).

For 4-digit displays, there are 12 pins in total.

When you place the decimal point downward (see below photo position), the pin

on the lower left part is referred to 1, the upper left part 12.

Manual for LED segment display:

2）Connection for V4.0:

Connection for 2560 R3:

3）Sample program

//

// display 1234

 // select pin for cathode

 int a = 1;

 int b = 2;

 int c = 3;

 int d = 4;

 int e = 5;

 int f = 6;

 int g = 7;

 int dp = 8;

 // select pin for anode

 int d4 = 9;

 int d3 = 10;

 int d2 = 11;

 int d1 = 12;

 // set variable

 long n = 1230;

 int x = 100;

 int del = 55; // fine adjustment for clock

 void setup()

 {

 pinMode(d1, OUTPUT);

 pinMode(d2, OUTPUT);

 pinMode(d3, OUTPUT);

 pinMode(d4, OUTPUT);

 pinMode(a, OUTPUT);

 pinMode(b, OUTPUT);

 pinMode(c, OUTPUT);

 pinMode(d, OUTPUT);

 pinMode(e, OUTPUT);

 pinMode(f, OUTPUT);

 pinMode(g, OUTPUT);

 pinMode(dp, OUTPUT);

 }

///

void loop()

{

 Display(1, 1);

 Display(2, 2);

 Display(3, 3);

 Display(4, 4);

}

///

void WeiXuan(unsigned char n)//

{

 switch(n)

 {

 case 1:

 digitalWrite(d1,LOW);

 digitalWrite(d2, HIGH);

 digitalWrite(d3, HIGH);

 digitalWrite(d4, HIGH);

 break;

 case 2:

 digitalWrite(d1, HIGH);

 digitalWrite(d2, LOW);

 digitalWrite(d3, HIGH);

 digitalWrite(d4, HIGH);

 break;

 case 3:

 digitalWrite(d1,HIGH);

 digitalWrite(d2, HIGH);

 digitalWrite(d3, LOW);

 digitalWrite(d4, HIGH);

 break;

 case 4:

 digitalWrite(d1, HIGH);

 digitalWrite(d2, HIGH);

 digitalWrite(d3, HIGH);

 digitalWrite(d4, LOW);

 break;

 default :

 digitalWrite(d1, HIGH);

 digitalWrite(d2, HIGH);

 digitalWrite(d3, HIGH);

 digitalWrite(d4, HIGH);

 break;

 }

}

void Num_0()

{

 digitalWrite(a, HIGH);

 digitalWrite(b, HIGH);

 digitalWrite(c, HIGH);

 digitalWrite(d, HIGH);

 digitalWrite(e, HIGH);

 digitalWrite(f, HIGH);

 digitalWrite(g, LOW);

 digitalWrite(dp,LOW);

}

void Num_1()

{

 digitalWrite(a, LOW);

 digitalWrite(b, HIGH);

 digitalWrite(c, HIGH);

 digitalWrite(d, LOW);

 digitalWrite(e, LOW);

 digitalWrite(f, LOW);

 digitalWrite(g, LOW);

 digitalWrite(dp,LOW);

}

void Num_2()

{

 digitalWrite(a, HIGH);

 digitalWrite(b, HIGH);

 digitalWrite(c, LOW);

 digitalWrite(d, HIGH);

 digitalWrite(e, HIGH);

 digitalWrite(f, LOW);

 digitalWrite(g, HIGH);

 digitalWrite(dp,LOW);

}

void Num_3()

{

 digitalWrite(a, HIGH);

 digitalWrite(b, HIGH);

 digitalWrite(c, HIGH);

 digitalWrite(d, HIGH);

 digitalWrite(e, LOW);

 digitalWrite(f, LOW);

 digitalWrite(g, HIGH);

 digitalWrite(dp,LOW);

}

void Num_4()

{

 digitalWrite(a, LOW);

 digitalWrite(b, HIGH);

 digitalWrite(c, HIGH);

 digitalWrite(d, LOW);

 digitalWrite(e, LOW);

 digitalWrite(f, HIGH);

 digitalWrite(g, HIGH);

 digitalWrite(dp,LOW);

}

void Num_5()

{

 digitalWrite(a, HIGH);

 digitalWrite(b, LOW);

 digitalWrite(c, HIGH);

 digitalWrite(d, HIGH);

 digitalWrite(e, LOW);

 digitalWrite(f, HIGH);

 digitalWrite(g, HIGH);

 digitalWrite(dp,LOW);

}

void Num_6()

{

 digitalWrite(a, HIGH);

 digitalWrite(b, LOW);

 digitalWrite(c, HIGH);

 digitalWrite(d, HIGH);

 digitalWrite(e, HIGH);

 digitalWrite(f, HIGH);

 digitalWrite(g, HIGH);

 digitalWrite(dp,LOW);

}

void Num_7()

{

 digitalWrite(a, HIGH);

 digitalWrite(b, HIGH);

 digitalWrite(c, HIGH);

 digitalWrite(d, LOW);

 digitalWrite(e, LOW);

 digitalWrite(f, LOW);

 digitalWrite(g, LOW);

 digitalWrite(dp,LOW);

}

void Num_8()

{

 digitalWrite(a, HIGH);

 digitalWrite(b, HIGH);

 digitalWrite(c, HIGH);

 digitalWrite(d, HIGH);

 digitalWrite(e, HIGH);

 digitalWrite(f, HIGH);

 digitalWrite(g, HIGH);

 digitalWrite(dp,LOW);

}

void Num_9()

{

 digitalWrite(a, HIGH);

 digitalWrite(b, HIGH);

 digitalWrite(c, HIGH);

 digitalWrite(d, HIGH);

 digitalWrite(e, LOW);

 digitalWrite(f, HIGH);

 digitalWrite(g, HIGH);

 digitalWrite(dp,LOW);

}

void Clear() // clear the screen

{

 digitalWrite(a, LOW);

 digitalWrite(b, LOW);

 digitalWrite(c, LOW);

 digitalWrite(d, LOW);

 digitalWrite(e, LOW);

 digitalWrite(f, LOW);

 digitalWrite(g, LOW);

 digitalWrite(dp,LOW);

}

void pickNumber(unsigned char n)// select number

{

 switch(n)

 {

 case 0:Num_0();

 break;

 case 1:Num_1();

 break;

 case 2:Num_2();

 break;

 case 3:Num_3();

 break;

 case 4:Num_4();

 break;

 case 5:Num_5();

 break;

 case 6:Num_6();

 break;

 case 7:Num_7();

 break;

 case 8:Num_8();

 break;

 case 9:Num_9();

 break;

 default:Clear();

 break;

 }

}

void Display(unsigned char x, unsigned char Number)// take x as coordinate and display

number

{

 WeiXuan(x);

 pickNumber(Number);

 delay(1);

 Clear() ; // clear the screen

}

//

4）Result

Download the above code to the V4.0 Board or MEGA 2650 Board and see the

result.

The experiment result displays 1234 on the LED display.

Note: if it’s not displaying correctly, check the wiring.

Thank you.

Project 17: 8*8 LED matrix

1）Introduction

With low-voltage scanning, LED dot-matrix displays have some advantages such as

power saving, long service life, low cost, high brightness, wide angle of view, long

visual range, waterproof, and numerous specifications.

LED dot-matrix displays can meet the needs of different applications and thus have

a broad development prospect.

This time, we will conduct an LED dot-matrix experiment to

experience its charm firsthand.

2）Hardware required

 1 * V4.0 Board or MEGA 2650 Board

 1 * 8x8 dot-matrix

 8 * Resistor (220Ω)

 1 * Breadboard

 1 * USB cable

 16 * Jumper wires

3）Circuit connection

The external view of a dot-matrix is shown as

follows:

The display principle of the 8*8 dot-matrix:

The 8*8 dot-matrix is made up of sixty-four LEDs, and each LED is placed at the

cross point of a row and a column.

When the electrical level of a certain row is 1 and the electrical level of a certain

column is 0, the corresponding LED will light up.

If you want to light up the LED on the first dot, you should set pin 9 to high level

and pin 13 to low level.

If you want to light LEDs on the first row, you should set pin 9 to high level and pins

13, 3, 4, 10, 6, 11, 15 and 16 to low level.

If you want to light the LEDs on the first column, set pin 13 to low level and pins 9,

14, 8, 12, 1, 7, 2 and 5 to high level.

Connection diagram

Connection for 2560 R3:

4）Sample program for displaying “0”

//

// set an array to store character of “0”

unsigned char Text[]={0x00,0x1c,0x22,0x22,0x22,0x22,0x22,0x1c};

void Draw_point(unsigned char x,unsigned char y)// point drawing function

{ clear_();

 digitalWrite(x+2, HIGH);

 digitalWrite(y+10, LOW);

 delay(1);

}

void show_num(void)// display function, call point drawing function

{

 unsigned char i,j,data;

 for(i=0;i<8;i++)

 {

 data=Text[i];

 for(j=0;j<8;j++)

 {

 if(data & 0x01)Draw_point(j,i);

 data>>=1;

 }

 }

}

void setup(){

int i = 0 ;

for(i=2;i<18;i++)

 {

 pinMode(i, OUTPUT);

 }

 clear_();

}

void loop()

{ show_num();

}

void clear_(void)// clear screen

{for(int i=2;i<10;i++)

 digitalWrite(i, LOW);

 for(int i=0;i<8;i++)

 digitalWrite(i+10, HIGH);

}

//

5）Test Result

Burn well the program into V4.0 Board or MEGA 2650 Board, the dot-matrix will

display 0.

Note: if it’s not displaying correctly, check the wiring.

Thank you.

Project 18:Potentiometer Sensor

1）Introduction

The sensor is based on a potentiometer. A potentiometer is also
known as a variable resistor. It is a perfect demonstration of a
variable voltage divider circuit. Its voltage can be subdivided into
1023, easy to be connected to Arduino with our sensor shield.
Combined with other sensors, you are able to make interesting
projects by reading the analog value from the IO port.

2）Specification

 Supply Voltage: 3.3V to 5V
 Sensor type: Analog

3）Circuit connection

Connection for 2560 R3:

4）Sample program

///////////////////////////

int val = A0;

void setup() {
 // put your setup code here, to run once:
 Serial.begin(9600);
}

void loop() {
 // put your main code here, to run repeatedly:
 val = analogRead(A0);
 Serial.println(val);
 delay(200);
}

//

5）Test Result

After uploading the code, open the serial monitor and set the
baud rate to 9600, you should see the analog value is showed on
the monitor.

If rotate the potentiometer, the printed analog value will change
within the range of 0-1023.

Project 19:RGB LED module

1）Introduction

This is a full-color LED module, which contains 3 basic colors－red, green

and blue. They can be seen as separate LED lights.

After programming, you can turn them on and off by sequence or can

also use PWM analog output to mix three colors to generate different

colors.

2）Specification

 Color: red, green and blue

 High Brightness

 Voltage: 5V

 Input: digital level

3）Circuit connection

Connection for 2560 R3:

4）Sample program

////////////////////

int rad = 9;

int green = 10;

int blue = 11;

void setup() {

 // put your setup code here, to run once:

pinMode(rad,OUTPUT);

pinMode(green,OUTPUT);

pinMode(blue,OUTPUT);

}

void loop() {

 digitalWrite(rad,HIGH);

 delay(500);

 digitalWrite(rad,LOW);

 delay(500);

 digitalWrite(green,HIGH);

 delay(500);

 digitalWrite(green,LOW);

 delay(500);

 digitalWrite(blue,HIGH);

 delay(500);

 digitalWrite(blue,LOW);

 delay(500);

}

////////////////////

5）Test Result

Done uploading the code, you should see the RGB LED flashing with

different colors.

	Inland Starter kit
	（1）Installing Arduino IDE
	（2） V4.0 Development Board
	（4）Installing V4.0 board Driver
	（5）Arduino IDE Setting
	（6）Start First Program

	How to Add a Library?
	Project Details
	Project 1: Hello World
	1）Introduction
	2）Hardware required
	3）Sample program
	4）Result Show

	Project 2: LED blinking
	1）Introduction
	2）Hardware required
	3）Connection for V4.0:
	4）Sample program
	5）Test Result

	Project 3: PWM
	1）Introduction
	2）Hardware required
	3）Connection for V4.0:
	4）Sample program
	5）Test Result

	Project 4: Traffic light
	1）Introduction
	2）Hardware required
	3）Connection for V4.0:
	4）Sample program
	5）Test Result

	Project 5: LED chasing effect
	1）Introduction
	2）Hardware required
	3）Connection for V4.0:
	4）Sample program
	5）Result

	Project 6: Button-controlled LED
	1）Introduction
	2）Hardware required
	3）Sample program
	(4）Result

	Project 7: Active buzzer
	1）Introduction
	2）Hardware required
	3）Connection for V4.0:
	4）Sample program
	5）Result

	Project 8: Passive buzzer
	1）Introduction
	2）Hardware required
	3）Connection for V4.0:
	4）Sample program
	5）Result

	Project 9: Photo Resistor
	1）Introduction
	2）Hardware required
	3）Connection for V4.0:
	4）Sample program
	5）Result

	Project 10: Flame sensor
	1）Introduction
	2）Working principle:
	3）Sensor connection
	4）Hardware required
	5）Connection for V4.0:
	6）Sample program
	7）Result
	1）Introduction
	2）Hardware required
	3）Connection for V4.0:
	4）Sample program
	5）Result

	Project 12: Ball tilt switch
	1）Introduction
	2）Hardware required
	3）Connection for V4.0:
	4）Sample program
	5）Test Result
	1）What is an infrared receiver?
	2）Hardware required
	3）Connection Diagram
	4）Features：
	5）Sample program
	6）Result

	Project 14: 74HC595
	1） Introduction
	2）Hardware required
	3）Circuit Connection
	4）Sample program
	5）Result

	Project 15: 1-digit LED display
	1）Introduction
	2）Hardware required
	3）Circuit Connection
	4）Sample program
	5）Result

	Project 16: 4-digit LED display
	1）Introduction
	2）Connection for V4.0:
	3）Sample program
	4）Result

	Project 17: 8*8 LED matrix
	1）Introduction
	2）Hardware required
	3）Circuit connection
	4）Sample program for displaying “0”
	5）Test Result

	Project 18:Potentiometer Sensor
	1）Introduction
	3）Circuit connection
	4）Sample program
	5）Test Result

	Project 19:RGB LED module
	1）Introduction
	2）Specification
	3）Circuit connection
	4）Sample program
	5）Test Result

