

WP-Barco-DRAMP-API.doc

Technical White Paper

Barco DRAMP API

 Version: 2.0 | 2015/02/12

Authors: HUHE

 Status: Draft

SUMMARY
This white paper describes the Video Wall Application Programming Interface (DRAMP API) for monitoring
and controlling Barco video walls over TCP/IP based networks. DRAMP is specified according to
Representational State Transfer (REST) principles using the standard application layer HTTP protocol for
communication between clients and servers (devices). This protocol is a successor version to OLAPI with
some changes in basic HTTP protocol handling and improvements and consolidation in the resource tree.

Clients send requests to walls or devices using a Uniform Interface instead of a large and arbitrary
vocabulary of nouns and verbs to talk to the devices. Requests use the four standard HTTP methods GET,
PUT, POST and DELETE only. Such requests refer to hierarchically structured resources provided by the
wall and devices to retrieve and manipulate wall and device state. Individual resources are identified using
Uniform Resource Identifiers (URIs), which are commonly used today for retrieving web pages on the
World Wide Web. On request, clients and devices exchange representations of resources using the JSON
(Java Script Object Notation) format to represent data.

Besides operations to directly retrieve and manipulate resources using GET and PUT requests, DRAMP
provides “asynchronous” requests to interact with device hardware (actions). Such requests may complete
immediately and send back a REQUEST_DONE response if processing time is very short, or the response
tells the caller the command is IN_PROGRESS including a “job ID”, which can be used to access a
corresponding resource to ask for completion.

.

Copyright  2010-2015 Barco n.v.

All rights reserved.

This document is protected by copyright and distributed under licenses restricting its use, copying,
distribution and decompilation. No part of this document may be reproduced in any form by any means
without prior written authorization of Barco. The information in this document is subject to change without
notice.

Technical White Paper Barco

WP-Barco-DRAMP-API.doc page 2 of 30

TABLE OF CONTENTS
Summary .. 1

Table Of Contents .. 2

1 Connecting to a Wall and its Devices ... 6

2 JSON Representation .. 6

2.1 JSON Format Elements ... 6

2.2 JSON Media Type .. 7

2.3 Data Types ... 8

10.3.1 Basic Data Types ..8

10.3.2 Enumerated types ...8

2.4 Parameter and Action State Values ... 9

2.5 API Version .. 9

3 HTTP Status Codes ... 10

3.1.1 Standard Codes .. 10

3.1.2 Status Code 400 “Bad Request” Details ... 11

3.1.2.1 Requests without known parameters .. 11

3.1.2.2 Requests with a parameter of wrong basic data type.. 12

3.1.2.3 Requests with a parameter value out of range .. 13

3.1.2.4 Requests with a parameter or mandatory value missing .. 14

3.1.2.5 Actions request returning an error state .. 14

3.1.2.6 Actions request with unsupported action name ... 14

3.1.3 Resource root to access a wall in case of multi wall configurations ... 14

4 Resource Types ... 16

4.1 Data Resources ... 16

4.2 Actions Resource ... 18

4.2.1 Triggering Actions ... 18

4.2.2 Wall Actions .. 19

4.2.3 Action Identification ... 20

4.2.4 Freeing an Action ID ... 21

5 Resource Reference – General .. 22

5.1 Data Resources ... 22

5.1.1 Wall Service Resources .. 23

5.1.1.1 Resource "data/isAlive" ... 23

5.1.2 Walls Resource ... 23

5.1.2.1 Resource "walls" .. 23

5.1.3 Wall Resources ... 23

5.1.4 Device Resources ... 23

5.2 Actions Resource ... 24

5.2.1 Wall Service Actions ... 24

5.2.2 Wall Actions .. 24

5.2.2.1 Action "updateOperationState" .. 24

5.2.3 Device Actions .. 24

5.3 Enumeration Resources .. 24

5.3.1 Resource “enums/operationState” .. 24

5.3.2 Resource “enums/connectionState”.. 24

6 Resource Overview .. 25

6.1 Wall Service Level.. 25

6.2 Wall Level ... 25

6.3 Device Level ... 25

7 Request Examples – HTTP Protocol Level ... 26

7.1 Switch Wall ON, action completes immediately ... 26

7.2 Switch Wall ON, action completion delayed .. 27

Technical White Paper Barco

WP-Barco-DRAMP-API.doc page 3 of 30

7.3 Set Wall into IDLE state ... 27

8 Request Examples – cURL .. 28

8.1 GET isAlive .. 28

8.2 Switch Wall ON .. 28

8.3 GET last action state .. 29

8.4 Switch Wall IDLE.. 30

Technical White Paper Barco

WP-Barco-DRAMP-API.doc page 4 of 30

Document History

Date Author Reason for change

2015/02/12 HUHE Initial version

Technical White Paper Barco

WP-Barco-DRAMP-API.doc page 5 of 30

References

[REST] RESTful Web Services, Leonard Richardson/Sam Ruby, O'Reilly
ISBN 13: 978-81-8404-332-7

[REST-2] Representational State Transfer (REST)
http://en.wikipedia.org/wiki/Representational_State_Transfer

[HTTP/1.1] Hypertext Transfer Protocol - HTTP/1.1
http://www.w3.org/Protocols/rfc2616/rfc2616.html

[HTTP CODE] HTTP/1.1 Status Code Definitions

[URI] Uniform Resource Identifiers (URI): Generic Syntax
http://www.ietf.org/rfc/rfc3986.txt

[JSON] Introducing JSON (JavaScript Object Notation)
http://www.json.org/

[JSON-MT] The application/json Media Type for JavaScript Object Notation (JSON)
http://www.ietf.org/rfc/rfc4627.txt

[ZEROCONF] Zero Configuration Networking
http://www.zeroconf.org/
http://en.wikipedia.org/wiki/Zero_configuration_networking

[CAJUN] CAJUN library

 http://sourceforge.net/projects/cajun-jsonapi

[CURL] cURL library

 http://curl.haxx.se

[RESTLET] Restlet library

 http://www.restlet.org

[REST-JAX] RESTful Web Services Support in JAX-WS

 http://java.sun.com/developer/technicalArticles/WebServices/restful/)

[HTTPCLT] Apache HTTP Client

 http://hc.apache.org/httpclient-3.x

[GWT] Google Web Toolkit GWT

 http://code.google.com/webtoolkit/doc/1.6/DevGuideServerCommunication.html#DevGuide
HttpRequests

[WCF 3.5] A Guide to Designing and Building RESTful Web Services with WCF 3.5

 http://msdn.microsoft.com/en-us/library/dd203052.aspx

[WCF REST] A Developer’s Guide to the WCF REST Starter Kit

Technical White Paper Barco

WP-Barco-DRAMP-API.doc page 6 of 30

1 CONNECTING TO A WALL AND ITS DEVICES
Video wall devices are usually not directly accessible by clients. Instead, a BCMC box is mounted in the
wall, which acts as a gateway and presents the devices via a wall resource to the clients. The BCMC box
separates the wall internal network (labelled “Wall” on the box) from customer networks (labelled “Client”)
thus making sure there is no interference of the wall internal network traffic with the client networks. Clients
need only one TCPI/IP network connection to the gateway to talk to the wall device or any display in the
wall.

Direct connection to display devices is possible by installing a client in the Wall network or in cases where a
BCMC box is not available. In such a setup clients need to open one TCP/IP connection per display. The
device protocol will be the same, only URLs of resources will change, i.e. the wall part needs to be inserted
when talking to the gateway.

BCMC is running an embedded web server on standard port 80. Multiple services are published by the
BCMC system, i.e. an HTTP service providing internal web pages (HTML format) and the DRAMP service
providing JSON formatted representations. Both services share the same port.

BCMC services are announced in both networks via [ZEROCONF], for example:

API service: “BCMC._barco-dramp._tcp”

HTTP service: “BCMC._http._tcp”

DRAMP is based on HTTP/1.1 protocol. The usual “http” scheme is used to locate resources exposed via
the API:
"http:" "//" host [":" port] [abs_path]

where host is the network DNS name or IP address of the device network interface and the Request URI of
the resource is abs_path.

Use the IP address or DNS name of the BCMC box to create resource URIs, e.g.

http://<BCMC ip addr>/dramp/2/wall/1,1/data/device

to retrieve basic information on the device at top left wall position such as the operation state of the device.
In case of a direct network connection to a device the URL would look like:

http://<display ip addr>/dramp/2/data/device

Device services are announced via [ZEROCONF] in the Wall network in a similar way than BCM services,
for example:

“Barco OVD/KVD Series myWall A1._barco-dramp._tcp”

Multiple connections at the same time are allowed but the number of parallel connections will be limited by
the implementation.
Please note that the web server running on the device usually closes a connection after sending the HTTP
response. Clients are expected to handle this properly and reopen the connection with every call.

2 JSON REPRESENTATION

2.1 JSON Format Elements
Wall and device request and response data is transferred in HTTP request bodies using a JSON format
with defined elements. The order of elements is not defined and clients should not rely on the order shown
in the box below.

Depending on the request or response type these basic elements are mandatory or optional. Optional
elements can be skipped, mandatory elements must be included in requests otherwise the device will
return status code 400 “Bad Request” listing the mandatory resource with status “STATE_SET_ERROR”.

Technical White Paper Barco

WP-Barco-DRAMP-API.doc page 7 of 30

Each defined element has a reserved name and always the same structure. Depending on the request type
some elements are not available in a request or response.

{ "resource" : { "name" : "<resource name value>" },

 "service" : { "name" : "<service name value>"} ,

 "action" : { "name" : "<action name>",

 "state" : "<action state>",

 "seq" : <action sequence value >,

 "value" : <action id>}

 "params" : [{ "name" : "<params[0].name value> ",

 "state" : "<params[0].state value >",

 "seq" : "<params[0].sequence va lue>",

 "value" : <params[0].value value >

 },

 ...

 { "name" : "<params[n].name value> ",

 "state" : "<params[n].state value >",

 "seq" : "<params[n].sequence va lue>",

 "value" : <params[n].value value >

 }

]

}

� "name " is only used within the context of "resource", "params", "action" and "service". It gives the

identifier of an element and is always mandatory.

� "state " is only used within the context of "params" and "action". It shows the status of "params" or
"action" elements and is always mandatory. See 2.4 “Parameter and Action State Values” for a
detailed description of possible state values.

� "seq " is only used within the context of "action" and "params". It returns the sequence number of
action or "params" elements. Sequence numbers are a kind of time stamp, which can be used to
determine if a value is more recent than another. “seq” is always mandatory when used with action
representation or data resources.

� "value " is only used within the context of "params" and "action". It gives the value of a "params" entry
and is optional within "params" depending on its "state", but mandatory with "action" in case of action
responses sent from the device.

� "resource " is mandatory in answers on HTTP requests, in change events and action responses sent
from the device.

� "service " is mandatory in change events and action responses sent from the device in order to
simplify the identification of the originator.

� "params " is mandatory in PUT requests sent to the device, with POST requests sent to the device in
case the corresponding action has mandatory parameters, with answers of the device on GET
requests, if the response delivers values, and with change events sent from the device.

� "action " is mandatory in POST requests sent to the device, with answers on POST requests sent from
the device, with action responses sent from the device and with answers on GET requests on action
resources sent from the device.

2.2 JSON Media Type
The JSON media type as part of a HTTP request is "application/json". According to the HTTP/1.1 standard,
the Content-Type header should be set in order to identify the media type of the message body.

Technical White Paper Barco

WP-Barco-DRAMP-API.doc page 8 of 30

The API checks incoming requests for the Content-Type header field to distinguish between requests
containing JSON or other request types such as file uploads (e.g. firmware updates).1

Content type "application/json" is assumed, if the header is missing, empty or contains “application/x-www-
form-urlencoded”.

The client may add media type parameters2 to the content-type. The API currently ignores them
nevertheless.

If the message does not match any of the known media types, the API returns HTTP status code 415
“Unsupported Media Type”.

The API sets content-type "application/json" in most responses containing a JSON body. Please note, that
most responses with a HTTP error status code don't have a body and therefore no content-type.

2.3 Data Types

10.3.1 Basic Data Types
JSON values are not just strings; they belong to a certain data type like in most modern programming
languages. DRAMP uses the following set of data types defined by the [JSON] standard:

� String, for text data and enumerated types

� Number, for floating point and integral data

� Boolean, for Boolean values

� Object, for enclosing elements within a joint namespace

� Array, for listing the contained elements within a resource, for listing the values of enumerated types
and for listing arrays of values

In addition, sets of globally unique strings are defined as enumerated strings with some resources. The
required data type for resource values is defined in the Resource Reference.

Note: Where Number is used with integral data or parameters, the data type is listed in the Resource
Reference as "Number, int". In this case the API will always return integral values. On setting data or
parameters in such a case, clients are allowed to send double values but decimal places will be cut off by
the API.

Be aware: For data type “Number” (without “,int”) the API may still send integral values if the internal value
can be represented as such. Some client side JSON parsers may have problems converting such values if
you always convert “Number” into double values.

10.3.2 Enumerated types
Enumerated values are defined by a set of unambiguous strings giving the meaning of the enumeration
elements. Unambiguousness is global throughout all enumerated values, not only within a single
enumeration.
Strings passed through the API are checked against the set of strings defined for each enumeration. The
attempt to set a string, which is not within the defined set, will be refused with HTTP status code 400 Bad
Request. Illegal values passed out by the firmware will cause HTTP status code 500 Internal Server Error.
Enumerations and all enumeration elements are accessible through the Error! Reference source not
found. of the API.
Whenever referring to an enumerated type within the API specification, the affected enumeration is defined
by referring to the path of the enumeration resource of the type (e.g. "/dramp/2/enums/logLevel"), but the

1 The first API version provides JSON type requests only. Nevertheless, the client shall always set the

Content-Type of a request to avoid future code changes.

2 See http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.7

Technical White Paper Barco

WP-Barco-DRAMP-API.doc page 9 of 30

values to be used in requests are the string values defined by the enumeration resource (e.g.
"LOGLEVEL_TRACE").

2.4 Parameter and Action State Values
Parameters and action values may sometimes be available, sometimes a value is “in error” or unavailable.
The state of a value shall always be checked before accessing the value in a JSON structure. Sometimes
the value itself might not be available in the structure, only the state. These are possible state strings:

� “STATE_VALID” – a value is considered valid, successfully read from hardware, etc.

� “STATE_OUT_OF_RANGE” – a value has been successfully read from hardware, but is considered
as invalid, e.g. a faulty sensor was detected. The value can still be present but shall not be used for
further considerations such as defining error conditions, etc.

� “STATE_INVALID_ARGUMENT” – an invalid value was sent in a PUT or POST request.

� “STATE_SET_ERROR” – general failure in a PUT or POST request, something went wrong. If a
request contains invalid arguments this may be returned for arguments, which were not processed.

� “STATE_WRITE_ERROR” – failure in a PUT or POST request, a value could not be changed when
accessing a hardware or software component.

� “STATE_NOT_SET” – a value is part of a response but has never been read or initialized, shall not be
used for further processing.

� “STATE_TEMPORARILY_NOT_AVAILABLE” – a device is in a state where the value is temporarily
not available, e.g. some other action is running, which blocks the requested action, some component
is still heating up, etc.

� STATE_NOT_READY – a device is in a state where the value cannot be processed at all, e.g. some
values show this state when the device is in IDLE state, where the formatter component is switched
off. Another case is a device that cannot be connected where its connectionState indicates
CONNECTIONSTATE_NOT_RESPONDING.

� “STATE_IN_PROGRESS” – an action has been accepted for processing, will start soon or has been
started.

� “STATE_REQUEST_DONE” – a request has been successfully completed.

� “STATE_TIME_OUT” – an action has not been completed within specified time.

� “STATE_NOT_AVAILABLE” – the device doesn’t support the requested action or the resource value is
not available for this device type or variant.

� “STATE_ERROR” – unspecific error returned by an action request.

� “STATE_LAST_VALID” – last known value of a device before connection to the device was lost.

� “STATE_UNKNOWN” – a cached device value was never updated from the real device. This may
happen if a known device is not present when starting up the BCM server or current device firmware
version does not support the value at all.

2.5 API Version
Software and Firmware are released with a certain version number, for example 2.0.0. The API is part of
the software but has its own version number, which defines the set of requests and resources available to
clients.

Technical White Paper Barco

WP-Barco-DRAMP-API.doc page 10 of 30

The BCM or device API version can be read using a GET request on resource
"data/device/version/apiVersion".3 The version information consists of three parts: e.g. "0.9.0":

� Part 1 and 2 give the document version of the relevant specification, in this case "0.9".

� Part 3 is incremented on bug-fixes of the API, as long as the changes don't invalidate the API
specification. In this case, a bug-fix of version "0.9.0" would increment the API version to "0.9.1".

Updating the specification leads to a new API version, as changes of the specification need to be
implemented in the API, and the API version will be updated to the new document version with 0 at third
place: "1.0.0".

The version’s first digit is incremented whenever the protocol is broken by an API change. All second digit
changes are fully compatible, e.g. an API implementation 1.0.0 should be still valid fulfilling an API spec
1.1, Clients developed against 1.0 spec can be run without changes against API 1.1. On the other hand,
API implementation 1.1.0 should be 100% valid and fulfilling spec 1.0 reg. scope of spec 1.0. So, clients
using version 1.1 features can still be run against an API implementation 1.0 if the client checks for API
version when using API extensions of version 1.1.

Now, if we only change KVD specific parts in a new spec version 1.2 this means all OVD existing
implementations 1.0 and 1.1 are still valid and compatible with 1.2. If we change the generic part in 1.2,
then want to add a change for OVD after that, the OVD API implementation has to implement the generic
changes of 1.2. Whatever change has been implemented for KVD in spec version 1.2 (generic or specific
part), the OVD change will lead to new spec version 1.3.

3 HTTP STATUS CODES

3.1.1 Standard Codes

All requests sent to OLAPI return a standard HTTP status code. Status codes are used in a generalized
uniform way according to following table (see also [HTTP CODE]):

Code Name Reason
200 OK A request has been successfully received and processed. The answer

body contains valid data if applicable.
201 Created The subscription request of a client has successfully been processed

and the subscription has been added.
202 Accepted A POST request has been successfully received, which is being

processed asynchronously. The requested action has successfully
been enqueued to firmware, but can still fail while being processed.
The answer body contains valid data, if applicable.

400 Bad Request

see Status Code 400 “Bad Request” Details for further information

403 Forbidden The request sent by the client can't be performed as currently all
available subscriber or action IDs are in use. In the context of action
requests, if the same action is already running or no more actions are
accepted by the device The client may retry the request as soon as
one of the mentioned possible blocking conditions is gone, e.g. an
action is done, so the device can accept further actions.

3 Note: in current version you can only GET data/device/version and extract the details from the

structured resource, accessing the detailed resource is not yet available.

Technical White Paper Barco

WP-Barco-DRAMP-API.doc page 11 of 30

404 Not Found The client used a URI which is not directly addressable or does not
exist. Examples are:
- wall doesn’t exist (yet)
- module doesn’t exist, for example module 3,1 in a wall with 2 rows
and 2 columns
- no real device assigned to a module position, for example module
2,1 in a wall with 2 rows and 2 columns

405 Method Not
Allowed

The client used a HTTP method, which the addressed resource does
not support: e.g. DELETE used on an enumeration resource. See
chapter”Resource Reference” for supported methods of each
resource.

409 Conflict The subscription request of a client could not be processed as the
provided ID already exists.

411 Length Required This code is returned when receiving a POST or PUT request without
the mandatory Content-Length entity.

413 Request Entity
Too Large

The request's body size in bytes exceeded the internal limit of max 1
MByte4.

414 Request-URI Too
Long

This code is returned if the request's URI begins with "/dramp"5 and
has a length exceeding the internal limit of max 10 kByte4.

415 Unsupported
Media Type

This code is returned when the request contained malformed or no
JSON, e.g. a representation violating the JSON specification, or the
request body doesn't meet the requirements of the "multipart/form-
data" message type.

500 Internal Server
Error

This code is returned by the HTTP server when OLAPI is not
available. This occurs in case the device software is not (yet) running
or not responding, e.g. during starting up of a device or due to internal
errors.

503 Service
Unavailable

This code is returned when the interfacing function call between
dataIF and firmware failed, or when there's not enough free space
within the internal file system to receive the binary file for updating
software.

3.1.2 Status Code 400 “Bad Request” Details

3.1.2.1 Requests without known parameters
If a client's PUT request on a data resource contains an empty "params" array, or the "params" array
contains resource names, which are unknown within the context of the addressed resource, the request will
be denied completely. The response will list any of its writable resources with status
"STATE_SET_ERROR".

Example response:
Status: 400 Bad Request

Content-Type: "application/json"

{ "resource" : { "name" : "http://10.2.1.12/dramp /2/wall/1,1/data/device"},

 "params" : [{ "name" : "/dramp/2/wall/1,1/data /device/startupState",

 "state" : "STATE_SET_ERROR"

 }

4 1 MByte equals 1024 kBytes, 1 kByte equals 1024 Bytes
5 Uri's not beginning with "/dramp" are handled by the http server and not by the API. The currently used

lighttpd server returns HTTP status 500 Internal Server Error, if the URI length exceeds 254 bytes.

Technical White Paper Barco

WP-Barco-DRAMP-API.doc page 12 of 30

]

}

If a client's POST request on an actions resource contains an empty "params" array, or the "params" array
contains parameter names, which are unknown within the context of the requested action, and the action
has mandatory parameters, the request will be denied completely. The answer will list any of the possible
parameters of the action with status "STATE_SET_ERROR".

Example response:
Status: 400 Bad Request

Content-Type: "application/json"

{ "resource" : { "name" : "http://10.2.1.12/dramp /2/wall/actions"},

 "action" : { "name" : "updateOperationState",

 "state" : "STATE_SET_ERROR"

 }

 "params" : [{ "name" : "pOperationState",

 "state" : "STATE_SET_ERROR"

 }

]

}

3.1.2.2 Requests with a parameter of wrong basic da ta type
Basic data types are listed in 2.3 “Data Types”. If a client's PUT request on a data resource or POST
request on an actions resource contains a parameter of different basic data type than specified, the request
will be denied completely. The response lists the resource or parameter with status
"STATE_INVALID_ARGUMENT":

Example response: "startupState" is an enumerated value; its data type is expected to be String:
Status: 400 Bad Request

Content-Type: "application/json"

{ "resource" : { "name" : "http://10.2.1.12/dramp /2/wall/1,1/data/device"},

 "params" : [{ "name" : "/dramp/2/wall/1,1/data /device/startupState",

 "state" : "STATE_INVALID_ARGUMENT "

 }

]

}

Technical White Paper Barco

WP-Barco-DRAMP-API.doc page 13 of 30

Example response (POST request on actions):
data type of " pBrightnessTarget" is expected to be Number:
Status: 400 Bad Request

Content-Type: "application/json"

{ "resource" : { "name" : "http://10.2.1.12/dramp /2/wall/actions/"},

 "action" : { "name" : "updateColorBrightness" ,

 "state" : "STATE_SET_ERROR"

 }

 "params" : [{ "name" : "pTargetBrightness",

 "state" : "STATE_INVALID_ARGUMENT "

 }

]

}

3.1.2.3 Requests with a parameter value out of rang e
If a client's request contains a string value for an enumerated value, which does not match any of the
allowed strings, the value is considered to be out of range.

Numerical values can also be out of range as the target data type, which is used internally can have a
smaller value range than the JSON Number type (which is always a “double” data type).

Example: the pTargetBrightness component of the ControlBrightness resource is 16 bit integer.

Example response on a POST request:
Status: 400 Bad Request

Content-Type "application/json"

{ "resource" : { "name" : "http://10.2.1.12/dramp /2/wall/actions"},

 "action" : { "name" : "updateColorBrightness" ,

 "state" : "STATE_SET_ERROR"

 }

 "params" : [{ "name" : "pTargetBrightness",

 "state" : "STATE_OUT_OF_RANGE"

 }

]

}

Technical White Paper Barco

WP-Barco-DRAMP-API.doc page 14 of 30

3.1.2.4 Requests with a parameter or mandatory valu e missing
If the “params” array of a client's PUT request is missing a mandatory value, or a POST request is missing
a mandatory parameter, the request will be denied completely. The answer will list the affected non-optional
resource or parameter with status "STATE_SET_ERROR".

Example response on a POST request:
Status: 400 Bad Request

Content-Type: "application/json"

{ "resource" : { "name" : "http://10.2.1.12/dramp /2/wall/actions"},

 "action" : { "name" : "updateBrightnessMode",

 "state" : "STATE_SET_ERROR"

 }

 "params" : [{ "name" : "pBrightnessMode",

 "state" : "STATE_SET_ERROR"

 }

]

}

3.1.2.5 Actions request returning an error state
If a client's action request for an action could not be en-queued internally, because the device returns any
error state or is in an error state, the request will be answered with HTTP status 400 “Bad request”. The
action's state will give the error detail (see 2.4 “Parameter and Action State Values”).
A special situation where this happens is, where there is no connection to the device is detected, or the
connection got lost for some reason. In this case “state” returns STATE_NOT_READY.

Example response:
Status: 400 Bad Request

Content-Type: "application/json"

{ "resource" : { "name" : "http://10.2.1.12/dramp /2/wall/actions/"},

 "action" : { "name" : "updateTargetBrightness ",

 "state" : "STATE_TEMPORARILY_NOT_ AVAILABLE"

 }

}

3.1.2.6 Actions request with unsupported action nam e

If a client request asks for an unknown action name the API returns HTTP status 400 “Bad request” and an
action state of STATE_ERROR. The name of the unknown action is returned.

3.1.3 Resource root to access a wall in case of mul ti wall configurations
(Currently this feature is only supported by …).

There are two alternatives to specify the resource root for a wall:

Technical White Paper Barco

WP-Barco-DRAMP-API.doc page 15 of 30

In order to access the first wall in the configuration (or the one and only wall in a single wall configuration)
use the “wall” resource name:

/dramp/2/wall/data/device

Example:

 "resource": {"name": "http://10.100.180.99:62000 /dramp/2/wall/data/device/"},

 "params": [

 {

 "name": "/dramp/2/wall/data/device/wallNam e",

 "state": "STATE_VALID",

 "seq": 0,

 "value": "BCM WALL"

 },

 {

 "name": "/dramp/2/wall/data/device/wallCol umns",

 "state": "STATE_VALID",

 "seq": 0,

 "value": 3

 },

 {

 "name": "/dramp/2/wall/data/config/wallRow s",

 "state": "STATE_VALID",

 "seq": 0,

 "value": 2

 }

]

}

In order to specify a certain wall in a configuration with one or more walls the wall name has to be specified

/dramp/2/walls/{WallName}/data/device

/dramp/2/walls/{WallName}/1,1/data/device

Technical White Paper Barco

WP-Barco-DRAMP-API.doc page 16 of 30

Example:

 "resource": {"name": "http:// 10.100.180.99:6200 0/dramp/2/walls/kvd/data/device/"},

 "params": [

 {

 "name": "/dramp/2/walls/kvd/data/config/wa llName",

 "state": "STATE_VALID",

 "seq": 0,

 "value": "LDX"

 },

 {

 "name": "/dramp/2/walls/kvd/data/device/wa llColumns",

 "state": "STATE_VALID",

 "seq": 0,

 "value": 1

 },

 {

 "name": "/dramp/2/walls/kvd/data/device/wa llRows",

 "state": "STATE_VALID",

 "seq": 0,

 "value": 2

 }

]

}

4 RESOURCE TYPES
Currently there are two resource types: data resources and the actions resource. Resources may be
“general” resources or device specific (see Resource Reference in this document). General resources are
available on all supported device types in the same generic way; device specific resources are only
available if the device “behind” the API supports such a feature. For example, OVD and KVD support
Sense-X, an entry level display maybe not. All Sense-X related resources are not available for the entry
level device. Requests on not available resources return with HTTP status code 404 “Not available”.

4.1 Data Resources
Data resources represent the device model to the “outside world”. Data resource URI’s always begin with
“/data”. GET requests are used to retrieve values, some resources can be modified using a PUT request.

Request bodies may contain these elements:

� "resource " is used to identify the response as answer from the addressed resource.

A single struct within the "params" array contains data name, state and value:

� "name " is the name of the resource as path beginning at the top level of the resource model hierarchy
or relative to the resource entry. The JSON type of name is “String”.

� "state " is the status of the resource, see chapter “Parameter and Action State Values”. The JSON
type of state is “String, enumeration”.

� "seq " is the sequence number of the resource as given by the firmware. The firmware updates this
number internally when updating the resource value or state. A higher number means a newer
resource value and state.

Technical White Paper Barco

WP-Barco-DRAMP-API.doc page 17 of 30

A change in sequence number does not necessarily show a change in value or state as well. It is
explicitly allowed to send the same value or state with a higher sequence number, but the device will
never send a changed state or value with a lower sequence number.6
Note that this number is reset on firmware start-up or overflow. It is the responsibility of the client to
make sure that sequence numbers sent before and after the reset are never compared to each other.
The JSON type of seq is “Number, int”.

� "value " is the current value of the resource. The JSON type can be one of the basic or enumerated
types as defined above. The value element is missing, if state is not "STATE_VALID" or
"STATE_OUT_OF_RANGE".

The device will answer on a GET request with one of these HTTP status codes7:
� 200 OK

� 404 Not Found

� 414 Request-URI Too Long

� 500 Internal Server Error

� 503 Service Unavailable.

Note: HTTP status code 200 OK is the only code where the response sends a body, with all other status
codes the response body will be empty!

Some resources support reading only in some modes or states of the device. A GET request on these
resources without being in the specified mode or state will still be answered with HTTP status 200 OK, but
the state flags of the according values will indicate an error state (see chapter“Resource Reference”).

Some resources are directly writable. Clients must use HTTP method PUT on a data resource to change
the current value of one or more sub-resources within a resource. PUT is a “synchronous” HTTP call,
meaning the device's answer to the client won't be sent until the resource value has been changed.

The device will answer on a PUT request with one of these HTTP status code:
� 200 OK

� 400 Bad Request

� 404 Not Found

� 411 Length Required

� 413 Request Entity Too Large

� 414 Request-URI Too Long

� 415 Unsupported Media Type

� 500 Internal Server Error

� 503 Service Unavailable

Note: HTTP status code 200 OK is the only code where the request has been processed!

With HTTP status 400 the response body will contain further error details (see chapter“Status Code 400
Bad Request Details”).

Some resources support writing only in some modes or states of the device. A PUT request on these
resources without being in the specified mode or state will be answered with HTTP status 400 Bad

6 This is an implementation hint and especially useful in cases where tracking changes for every single

value is too costly for the device. If a value or state changes, the device may send out a bundle of
values and states where all have the same new sequence number, but only one value or state has really
changed.

7 See chapter “HTTP Status Codes” for detailed explanation.

Technical White Paper Barco

WP-Barco-DRAMP-API.doc page 18 of 30

Request, and the state flags of the according values will indicate an error state (see chapter“Resource
Reference”).

When writing resources containing string values the value will be cut to the maximum allowed length if the
length exceeds the limit. The request will send back HTTP status 200!

4.2 Actions Resource
The actions resource represents a collection of implicitly triggered state changes at the device. Actions will
always be handled asynchronously, means the request to trigger an action is acknowledged immediately
sending back an HTTP 202 response, but the action may be finished later after sending the acknowledge.
An accepted action creates a temporary resource, which can be polled with GET requests for the result of
the action.

4.2.1 Triggering Actions
To trigger an action, clients need to send a POST request to the actions resource, e.g.
"http://10.2.1.12/dramp/2/wall/1,1/actions/". The request body must contain the action name specifying the
action to be executed. If an action has additional parameters, they are passed in the request body.

Parameter names and data types are specific to the action and listed in chapter “Resource Reference,
Actions Resource”. Although parameter names look very much like data resource names they are not
directly related and should not be confused with data resources.

Some parameters are optional, whereas parameters not contained in the client's POST request body are
skipped and not further handled.

Actions usually result in device state changes. The affected data resources are listed with each action in
chapter “Resource Reference, Actions Resource”.

The device will answer on a POST request with one of these HTTP status codes:
� 200 OK, action has been completed immediately, no action response is sent to the client

� 202 Accepted, action has been accepted for further processing, action response is sent later

� 400 Bad Request

� 403 Forbidden

� 404 Not Found

� 411 Length Required

� 413 Request Entity Too Large

� 414 Request-URI Too Long

� 415 Unsupported Media Type

� 500 Internal Server Error

� 503 Service Unavailable

Note: HTTP status code 200 OK and 202 Accepted are the only codes where the request has been
processed!

With HTTP status 400 the response body will contain further error details (see chapter “HTTP Status
Codes, Status Code 400 “Bad Request” Details”).

If the requested action is processed, the POST request returns HTTP response with status code 200 or 202
and a JSON body containing name, state, sequence and value of the action:

� "name " is the action's name. The JSON type of name is “String”.

� "state " is the action's status as returned by firmware. The JSON type of state is “String, enumeration”.

� "seq ": is the action's sequence number. A higher number means a newer resource state.
Note that this number is reset on software start-up or overflow. It is the responsibility of the client to

Technical White Paper Barco

WP-Barco-DRAMP-API.doc page 19 of 30

make sure that sequence numbers sent before and after the reset are never compared to each other.
The JSON type of seq is “Number, int”.

� "value " is the action's ID as assigned by the API. The JSON type of value is “Number”.

The action ID identifies the action as long as it is running, and for some time after it has been completed in
order to give clients a chance to retrieve the processing state of the action. The action ID has no meaning
for the order in which enqueued actions are being processed.
NOTE: The value (action ID) can be 0. In this case the API will not keep the processing state of the action,
clients cannot retrieve the processing state after the action has been completed.

Example acknowledgement:
{ "resource" : { "name" : "http://10.2.1.12/dramp/ 2/wall/actions/3"},

 "action" : { "name" : "updateOperationState",

 "state" : "STATE_IN_PROGRESS",

 "seq" : 9001,

 "value" : 3

 }

}

Accepting an action actually means that the firmware receives the action request and puts it into its queue.
The request can still fail if e.g. preconditions are not met or parameters are out of range. The action itself
may have not yet been started at the time the acknowledgement is sent out.

If en-queuing the requested action fails, because all available action IDs are in use, the acknowledgement
will return HTTP status code 403 “Forbidden”. In this case the client should wait some seconds or check for
completion of another action and retry.

After the requested action has been finished, the temporary action's state tells the client, if the action has
been finished successfully or with failure.

4.2.2 Wall Actions
Actions can be triggered on the whole wall. In this case the action response will contain the status info for
each individual module action in the following form.

The wall action is considered STATE_REQUEST_DONE when all corresponding module actions are
STATE_REQUEST_DONE.

If a certain module returns a problem, params returns the error details where the problem occurred. If the
problem is related to an action parameter the error detail will give the param name as error detail. If the
action problem is related to a module resource the module’s resource name is returned, the error details
are mapped to this resource's name and added to the params array of the action's representation. Note,
that the state of the actual resource in the data resource model is not affected by this.

"resource": {"name": "http://10.2.0.5/dramp/2/wall/ actions/4711"},
 "action": {
 "name": "idle",
 "state": "STATE_ERROR",
 "seq": 0,
 "value": 4711
 },
 "params": [
 {
 "name": "/dramp/2/wall/1,1/data/device/operationSta te",
 "state": " STATE_TEMPORARILY_NOT_AVAILABLE",

Technical White Paper Barco

WP-Barco-DRAMP-API.doc page 20 of 30

 "seq": 0,
 "value": 4712
 },
 {
 "name": "/dramp/wall/1,3/data/device/opera tionState",
 "state": " STATE_TEMPORARILY_NOT_AVAILABLE ",
 "seq": 0,
 "value": 4713
 }
]

}

4.2.3 Action Identification
The number of actions which the device can queue up or even run simultaneously is limited. Therefore the
device provides an amount of action IDs which are temporarily allocated when starting an action and freed
again, after the action has been finished. Currently there are 8 action IDs available which can be allocated
at the same time.

Action IDs are integral numbers, they are unique among all currently running actions.

Allocating an action ID is done when a client requests an action to be triggered.

Clients can poll for the action response by sending a GET request to the corresponding actions resource
and the trailing action ID assigned to the action.

Example response on GET on "http://10.2.0.5/dramp/2/wall/1,1/actions/3" in case the action is still running:
{ "resource" : { "name" : "http://10.2.0.5/dramp/2 /wall/1,1/actions/3"},

 "action" : { "name" : "updateOperationState",

 "state" : "STATE_IN_PROGRESS",

 "seq" : 12,

 "value" : 3

 }

}

Example answer on GET "http://10.2.0.5/dramp/2/wall/1,1/actions/3" in case the action is finished:
{ "resource" : { "name" : "http://10.2.0.5/dramp/2 /wall/1,1/actions/3"},

 "action" : { "name" : "on",

 "state" : "STATE_REQUEST_DONE",

 "seq" : 13,

 "value" : 3

 }

}

In case the action could not be finished successfully, the action's state will be set to "STATE_ERROR". The
error details will be returned in the "params" array with the parameter, which caused the error.

Example response on GET "http://10.2.0.5/dramp/2/wall/1,1/actions/3/" in case the action could not be
processed successfully:
{ "resource" : { "name" : "http://10.2.0.5/dramp/2 /wall/1,1/actions/3"},

 "action" : { "name" : "switchInput",

 "state" : "STATE_ERROR",

 "seq" : 12,

 "value" : 3

 }

Technical White Paper Barco

WP-Barco-DRAMP-API.doc page 21 of 30

 "params" : [{ "name" : "pSelectedInput",

 "state" : "STATE_OUT_OF_RANGE",

 "seq" : 1234567,

 "value" : “INPUT_3”

 }

]

}

The device will answer on a GET request with one of these HTTP status codes:

� 200 OK

� 404 Not Found

� 414 Request-URI Too Long

� 500 Internal Server Error

� 503 Service Unavailable

Note: HTTP status code 200 OK is the only code where the response sends a body, with all other status
codes the response body will be empty!

Accessing an action-ID which is already freed or has been deleted by a client will be answered with HTTP
status code 404 “Not Found”.

4.2.4 Freeing an Action ID
Freeing an action ID means to remove the corresponding resource, the action ID itself may be reused for
future action requests. The API will not reuse the freed action ID for the next 1000+ action requests.

Freeing an action ID is done:

� After a defined time period (currently 4 seconds) after the device has finished the action successfully or
with failure.

� Immediately when a client does a DELETE request on the action's resource.
Note: Deleting an existing action ID is possible for actions still in progress.

Example response on DELETE "http://10.2.0.5/dramp/2/wall/1,1/actions/3003":
HTTP/1.1 200 OK

Content-Length: 0

Date: Fri, 27 Nov 2009 07:21:17 GMT

The device will answer on a DELETE request with one of these HTTP status codes:

� 200 OK

� 404 Not Found

� 414 Request-URI Too Long

� 500 Internal Server Error

� 503 Service Unavailable

The response will never have a body.

Technical White Paper Barco

WP-Barco-DRAMP-API.doc page 22 of 30

5 RESOURCE REFERENCE – GENERAL
This functionality is available for all device types.

5.1 Data Resources
Video wall resources are organized along a hierarchical component structure, {…} is to be replaced by real
strings:

� The top most resource is the wall service usually provided by BCMC at URL
http://{BCMC ip or hostname}/dramp/2/data.

� The wall service can manage multiple walls at http://{BCMC ip or
hostname}/dramp/2/walls/{WallName}8

� For the first wall of a wall service we provide a special resource name at
http://{BCMC ip or hostname}/dramp/2/wall. The first wall is the first entry in the list returned by the
/dramp/2/walls resource.

� A wall consists of several devices in a grid at coordinate “1,1”, “1,2”, 2,1”, etc.:
http://{BCMC ip or hostname}/dramp/2/wall/1,2/data.
Grid coordinates are given as <column>,<row> where numbering starts at top left position, counting to
the right and bottom. For example 1,2 is the coordinate at column 1 (left most), row 2 (second row
counting from top).

� Please note: resource names are given as relative URLs9. To turn a relative URL into a full URL you
need to add protocol and machine information, as well as service and service context URL parts. The
service part in case of DRAMP is always “/dramp/2”. The service context depends on which service is
handling a request. For example, sending a GET request to the device service itself results in an
empty service context. There is no need to provide more information than the service resource name.
If you send the same device related request to the wall service you need to specify which device you
want to address. In this case the service context is added as “wall/{col,row}/”
A general URL follows this structure:
[protocol]:[host]/[service]/[context]/[resource name]
Example: http://10.20.30.40/dramp/2/wall/2,1/data/device
The protocol and service parts are fix, “http://” and “/dramp/2”. Host part is either BCMC or the device
(in case you are in the Wall network or BCMC is not available), for ex. 10.20.30.40. Context is
“wall/{col,row}” or empty, and resource names are listed in the Resource Reference.

� How to deal with reserved characters?
In case you use a character that is reserved for a special purpose you need to use percent-encoding
to address the wall10, e.g. %20 for the ASCII space character (SP), for example:
/dramp/2/walls/Show%20Room/data/device.

8 The current implementation is restricted to 1 wall per BCMC device but this may change in the future
9 See http://www.w3.org/TR/WD-html40-970917/htmlweb.html#h-5.1.2
10 See RFC 3986 „Uniform Resource Identifier (URI): Generic Syntax“, „2.1 Percent-Encoding“,

http://tools.ietf.org/html/rfc3986#page-11

Technical White Paper Barco

WP-Barco-DRAMP-API.doc page 23 of 30

5.1.1 Wall Service Resources

5.1.1.1 Resource "data/isAlive"

isAlive is for clients to check the communication is working and the wall service being up by sending a GET
request to this resource. The response of the device will never contain a params array.

Resource Name Data type supported
methods

This resource has no sub resources GET

5.1.2 Walls Resource

5.1.2.1 Resource "walls"
BCM versions supporting multiple walls in a single service expose a “walls” resource that clients can GET
in the usual way to retrieve the list of names of existing walls. The name of a wall can then be used to
address a certain wall.
Example: GET /dramp/2/walls returns:
{
 …
 "params" : [
 { "name" : "/dramp/2/walls", "value" : ["wall1" , "wall2"]
 }
]
}
For accessing wall1 this turns into such a URL:
/dramp/2/walls/wall1/data/device

5.1.3 Wall Resources
Currently none.

5.1.4 Device Resources
Currently none.

Technical White Paper Barco

WP-Barco-DRAMP-API.doc page 24 of 30

5.2 Actions Resource
There is only one actions resource for every component, but multiple actions will cause different state
changes depending on parameters sent to the wall or device.

5.2.1 Wall Service Actions
Resource “actions”

Currently none.

5.2.2 Wall Actions
Resource “{wall}/actions”

5.2.2.1 Action "updateOperationState"
Switch all devices of the wall from “standby” or “idle” to “on” state.

Maximum runtime: 60 seconds, typically ?? seconds

Parameter Names Data type Optional

pOperationState “enums/operationState” no

5.2.3 Device Actions
Currently none.

5.3 Enumeration Resources

5.3.1 Resource “enums/operationState”
Value Name Data type

“OPERATIONSTATE_ON” String GET

“OPERATIONSTATE_IDLE” String GET

* The device may never return this state if it goes to deep standby where all components are switched off
** The device may return this state during shutdown after initiating a reboot as well as during startup.

5.3.2 Resource “enums/connectionState”
Value Name Data type

“CONNECTIONSTATE_OK” String GET

“CONNECTIONSTATE_NOT_RESPONDING” String GET

Technical White Paper Barco

WP-Barco-DRAMP-API.doc page 25 of 30

6 RESOURCE OVERVIEW

6.1 Wall Service Level

Resource Name GET PUT POST DELETE

isAlive x - - -

6.2 Wall Level

Resource Name GET PUT POST DELETE

6.3 Device Level

Resource Name GET PUT POST DELETE

Technical White Paper Barco

WP-Barco-DRAMP-API.doc page 26 of 30

7 REQUEST EXAMPLES – HTTP PROTOCOL LEVEL
Note: \x0d0a shows hexadecimal ASCII values, which have to be included in the string sent over to the
device, all other line breaks, white space etc. shown below is for documentation only.

7.1 Switch Wall ON, action completes immediately
1) Action Request: HTTP Request Client -> Device
POST request to resource “http://10.20.30.40/dramp/2/wall/actions/”
POST\x20/dramp/2/wall/actions\x20HTTP/1.1\x0d0a

Content-Type:application/json\x0d0a

Content-Length:108\x0d0a

\x0d0a

{"action":{"name":"updateOperationState"},

 ”params”:[{“name”:”pOperationState“,”value”:”OPER ATIONSTATE_ON”}]

}\x0d0a

2) Action Response: HTTP Response Device -> Client
HTTP/1.1\x20200\x20OK\x0d0a

Content-Type:application/json\x0d0a

Transfer-Encoding:\x20chunked\x0d0a

Date:\x20Sat,\x2001\x20Jan\x202000\x2022:21:04\x20G MT\x0d\0a

Server:\x20lighttpd/1.4.35\x0d0a

\x0d0a

{\x0d0a

\x09"resource"\x20:\x20{\x0d0a

\x09\x09"name"\x20:\x20"http://10.20.30.40/dramp/2/ wall/actions/1"\x0d\0a

\x09},\x0d\0a

\x09"action"\x20:\x20{\x0d\0a

\x09\x09"name"\x20:\x20"updateOperationState",\x0d\ 0a

\x09\x09"state"\x20:\x20"STATE_REQUEST_DONE",\x0d\0 a

\x09\x09"value"\x20:\x201\x0d\0a

\x09}\x0d\0a

}\x0d\0a

Technical White Paper Barco

WP-Barco-DRAMP-API.doc page 27 of 30

7.2 Switch Wall ON, action completion delayed
1a) Action Request: HTTP Request Client -> Device
POST request to resource http://10.20.30.40/dramp/2/wall/actions/
-> same as above 7.1 1)

1b) Action Request: HTTP Response Device -> Client
HTTP/1.1\x20202\x20Accepted\x0d0a

Content-Type:application/json\x0d0a

Transfer-Encoding:\x20chunked\x0d0a

Date:\x20Sat,\x2001\x20Jan\x202000\x2022:21:04\x20G MT\x0d\0a

Server:\x20lighttpd/1.4.35\x0d0a

\x0d0a

{\x0d0a

\x09"resource"\x20:\x20{\x0d0a

\x09\x09"name"\x20:\x20"http://10.20.30.40/dramp/2/ wall/actions/1"\x0d\0a

\x09},\x0d\0a

\x09"action"\x20:\x20{\x0d\0a

\x09\x09"name"\x20:\x20"updateOperationState",\x0d\ 0a

\x09\x09"state"\x20:\x20"STATE_IN_PROGRESS",\x0d\0a

\x09\x09"value"\x20:\x208476\x0d\0a

\x09}\x0d\0a

}\x0d\0a

2a) Action Response: HTTP Request Client -> Device
GET request to http:// 10.20.30.40/dramp/2/wall/actions/8476”
GET\x20/dramp/2/wall/1,1/actions/8476\x20HTTP/1.1\x 0d0a

Content-Type:application/json\x0d0a

Content-Length:0\x0d0a

\x0d0a

2b) Action Response: HTTP Response Device -> Client
-> same as above 7.1 2)

7.3 Set Wall into IDLE state
1) HTTP Request
POST request to resource “http://10.20.30.40/dramp/2/wall/actions/”
POST\x20/dramp/2/wall/actions\x20HTTP/1.1\x0d0a

Content-Type:application/json\x0d0a

Content-Length:108\x0d0a

\x0d0a

{"action":{"name":"updateOperationState"},

 ”params”:[{“name”:”pOperationState“,”value”:”OPER ATIONSTATE_IDLE”}]

}\x0d0a

2b) Action Response: HTTP Response Device -> Client
-> same as above 7.1 2)

Technical White Paper Barco

WP-Barco-DRAMP-API.doc page 28 of 30

8 REQUEST EXAMPLES – CURL
[CURL] is a command line tool and library, which is free and open source and compiles and runs under a
wide variety of operating systems, such as Linux, Win32/64, OS X, etc. This tool provides an easy way to
test the API and study its behavior, or even use the library in production code.

Note: in our examples we assume the client is connected to the “Client” network on the BCM gateway
device, gBCM IP address is 10.20.30.40.

8.1 GET isAlive
curl -v http://10.20.30.40/dramp/2/data/isalive
* About to connect() to 10.20.30.40 port 80 (#0)
* Trying 10.20.30.40... connected
* Connected to 10.20.30.40 (10.20.30.40) port 80 (# 0)
> GET /dramp/2/data/isalive HTTP/1.1
> User-Agent: curl/7.19.6 (i386-pc-win32) libcurl/7 .19.6 zlib/1.2.3
> Host: 10.20.30.40
> Accept: */*
>
< HTTP/1.1 200 OK
< Content-Type: application/json;
< Transfer-Encoding: chunked
< Date: Wed, 19 Jul 2014 08:51:24 GMT
< Server: lighttpd/1.4.31
<
{
 "resource": {
 "name": "http://10.20.30.40/dramp/ 2/data/isAlive/"
 }
}* Connection #0 to host 10.20.30.40 left intact
* Closing connection #0

8.2 Switch Wall ON
curl -v --data @post_on.json -H "Content-Type:application/json"
http://10.20.30.40/dramp/2/wall/actions/
* About to connect() to 10.20.30.40 port 80 (#0)
* Trying 10.20.30.40... connected
* Connected to 10.20.30.40 (10.20.30.40) port 80 (# 0)
> POST /dramp/2/wall/actions HTTP/1.1
> User-Agent: curl/7.19.6 (i386-pc-win32) libcurl/7 .19.6 zlib/1.2.3
> Host: 10.20.30.40
> Accept: */*
>Content-Type: application/json;
>Content-Length: 108
>
<HTTP/1.1 200 OK
<Content-Type: application/json;
<Transfer-Encoding: chunked
< Date: Wed, 19 Jul 2014 08:51:24 GMT
< Server: lighttpd/1.4.31
<
{

Technical White Paper Barco

WP-Barco-DRAMP-API.doc page 29 of 30

 "resource": {
 "name": "http://10.20.30.40/dramp/2 /wall/actions/1"
 },
 "action": {
 "name": "updateOperationState",
 "state": "STATE_REQUEST_DONE ",
 "value": 1
 }
}* Connection #0 to host 10.20.30.40 left intact
* Closing connection #0

Text file “post_on.json” contains the action body:
{"action":{"name":"updateOperationState"},"params": [{"name":"pOperationState",
"value":"OPERATIONSTATE_ON"}]}

8.3 GET last action state
After finishing an action the state can still be accessed on the actions resource with the action ID
appended, for example we access the action state of last ON command returning ID 1.

curl -v http://10.20.30.40/dramp/2/wall/actions/1
* About to connect() to 10.20.30.40 port 80 (#0)
* Trying 10.20.30.40... connected
* Connected to 10.20.30.40 (10.20.30.40) port 80 (# 0)
> GET /dramp/2/wall/actions/1 HTTP/1.1
> User-Agent: curl/7.19.6 (i386-pc-win32) libcurl/7 .19.6 zlib/1.2.3
> Host: 10.20.30.40
> Accept: */*
>
< HTTP/1.1 200 OK
< Content-Type: application/json;
< Transfer-Encoding: chunked
< Date: Wed, 19 Jul 2014 08:51:24 GMT
< Server: lighttpd/1.4.31
<
{
 "resource": {
 "name": "http://10.20.30.40/dramp/2 /wall/actions/1"
 },
 "action": {
 "name": "updateOperationState",
 "state": "STATE_REQUEST_DONE ",
 "seq” : 1,
 "value": 1
 }

}* Connection #0 to host 10.20.30.40 left intact
* Closing connection #0

Technical White Paper Barco

WP-Barco-DRAMP-API.doc page 30 of 30

8.4 Switch Wall IDLE
curl --data @post_idle.json -H "Content-Type:application/json"
http://10.20.30.40/dramp/2/wall/actions/
* About to connect() to 10.20.30.40 port 80 (#0)
* Trying 10.20.30.40... connected
* Connected to 10.20.30.40 (10.20.30.40) port 80 (# 0)
> POST /dramp/2/wall/actions HTTP/1.1
> User-Agent: curl/7.19.6 (i386-pc-win32) libcurl/7 .19.6 zlib/1.2.3
> Host: 10.20.30.40
> Accept: */*
>Content-Type: application/json;
>Content-Length: 110
>
<HTTP/1.1 200 OK
<Content-Type: application/json;
<Transfer-Encoding: chunked
< Date: Wed, 19 Jul 2014 08:51:24 GMT
< Server: lighttpd/1.4.31
<
{
 "resource": {
 "name": "http://10.20.30.40/dramp/2 /wall/actions/1001"
 },
 "action": {
 "name": "updateOperationState",
 "state": "STATE_REQUEST_DONE ",
 "seq" : 2,
 "value": 1001
 }
}* Connection #0 to host 10.20.30.40 left intact
* Closing connection #0

Text file “post_idle.json” contains the action body:
{"action":{"name":"updateOperationState"},"params": [{"name":"pOperationState",
"value":"OPERATIONSTATE_IDLE"}]}

