
How to Correctly Validate 
Machine Learning Models

WHITEPAPER

Calculating model accuracy is a critical part of any machine learning project, yet many data science 
tools make it difficult or impossible to assess the true accuracy of a model. Often tools only validate 
the model selection itself, not what happens around the selection. Or worse, they don’t support tried 
and true techniques like cross-validation.

This whitepaper discusses the four mandatory components for the correct validation of machine 
learning models, and how correct model validation works inside RapidMiner Studio.



Performance Improvements in RapidMiner Studio

2rapidminer.com

Did you ever look forward to a watching a new movie, invite all your friends over to watch it with you, 
and then it turned out to be awful? Or did you ever buy a new vacuum cleaner based on some good 
reviews on Amazon only to find it breaks after a few uses? This is a situation where things look promising 
at first but then quickly collapse. Like a pair of cheap sneakers. Or Anakin Skywalker.

All data scientists have been in a situation where you think a machine learning model will do a great 
job of predicting something, but once it’s in production, it doesn’t perform as well as expected. In 
the best case, this is only an annoying waste of your time. But in the worst case, a model performing 
unexpectedly can cost millions of dollars – or potentially even human lives! 

So was the predictive model wrong in those cases? Possibly. But often it is not the model which is wrong, 
but how the model was validated. A wrong validation leads to over-optimistic expectations of what will 
happen in production. 

Since the consequences are often dire, I’m going to discuss how to prevent mistakes in model validation 
and the necessary components of a correct validation. 

To kick off the discussion, let’s get grounded in some of the basic concepts of validating machine 
learning models: predictive modeling, training error, test error and cross validation.

Correct Model Validation

Basics of Predictive Models and Validation
Before we dive deeper into the components of a correct validation without any surprises, this section 
describes the basic concepts of the validation of machine learning models.  If you are familiar with the 
concepts of predictive modeling, training and test error, as well as cross validation, you might skip to the 
next section called “Accidental Contamination”.

Introduction 

What Models Can Be Validated?  
Let’s make sure that we are on the same page and quickly define what we mean by a “predictive model”. 
We start with a data table consisting of multiple columns x1, x2, x3,… as well as one special column y. 
Below is a small example for such a table:
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A predictive model is a function which maps a given set of values for the x-columns to the correct 
corresponding value for the y-column. Finding such a function for a given data set is called training the 
model. 

Good models are not only avoiding errors for x-values they already know, but, in particular, they are also 
able to create predictions for situations which are only somewhat similar to the situations which are 
already stored in the existing data table. For example, such a model can predict that the y value for the 
x-values of (1, 2, 5,…) should be “negative,” since those values are closer to the values in the second row 
of our table. This ability to generalize from known situations to unknown future situations is the reason 
we call this particular type of model predictive.

In this blog series, we’ll focus only on predictive models for a column y with categorical values.  In 
principle, the validation concepts also hold if we want to predict numerical values (called regression), or 
if there is no such column at all (we call this unsupervised learning).

Training vs. Test Error
The one thing true for all machine learning methods, whether it is a decision tree or deep learning: you 
want to know how well your model will perform. You do this by measuring its accuracy.

Why? First of all, because measuring a model’s accuracy can guide you to select the best-performing 
algorithm for it and fine-tune its parameters so that your model becomes more accurate. But most 
importantly, you will need to know how well the model performs before you use it in production. If your 
application requires the model to be correct for more than 90% of all predictions but it only delivers 
correct predictions 80% of the time, you might not want the model to go into production at all.

So how can we calculate the accuracy of a model? The basic idea is that you can train a predictive model 
on a given dataset and then use that underlying function on data points where you already know the 
value for y. This results in two values of y:  the actual one, as well as the prediction from the model, 
which we will call p. The following table shows a dataset where we applied the trained model on the 
training data itself, leading to a situation where there is a new prediction p for each row:

Correct Model Validation

x1 x2 x3 … y

8 6 9 … positive

2 1 4 … negative

… … … … …

Table 1: A data table for predictive modeling. The goal is to find a function mapping the x-values to the correct value of y. 

Number of logical processors supported by the different editions of RapidMiner Studio.
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There are two important concepts used in machine learning: the training error and the test error.

•	 Training error. We get this by calculating the classification error of a model on the same data the 
model was trained on (just like the example above)

•	 Test error. We get this by using two completely disjoint datasets: one to train the model and the 
other to calculate the classification error. Both datasets need to have values for y. The first dataset is 
called training data and the second, test data.

Let’s walk through an example of each. We will use the data science platform RapidMiner Studio to 
illustrate how the calculations and validations are actually performed. You can download RapidMiner 
Studio for free at http://www.rapidminer.com and follow along with these examples if you like.

Let’s get started with the basic process you can use to calculate the training error for any given dataset 
and predictive model:

Figure 1: Creating a Random Forest model in RapidMiner Studio and applying it to the training data. The last operator 
called “Performance” then calculates the training error.

Correct Model Validation

x1 x2 x3 … y p

8 6 9 … positive positive

2 1 4 … negative negative

… … … … …

Table 2: A table with training data. We created a predictive model and applied it on the same data which leads to a pre-
diction for each row stored in column p. Now we can easily compare how often our predictions are wrong.

It is now relatively easy to calculate how often our predictions are wrong by comparing the predictions 
in p to the true values in y – this is called the classification error. To get the classification error, all we 
need to do is count how often the values for y and p differ in this table, and then divide this count by the 
number of rows in the table.



Performance Improvements in RapidMiner Studio

5rapidminer.com

Correct Model Validation

First we load a dataset (“Retrieve Sonar”) and deliver this training data into a “Random Forest” operator 
and an “Apply Model” operator which creates the predictions and adds them to the input training data. 
The last operator on the right, called “Performance,” then calculates the training error based on both the 
true values for y as well as the predictions in p.

Next let’s look at the process to calculate the test error. It will soon be apparent why it is so important 
that the datasets to calculate the test error are completely disjoint (i.e., no data point used in the training 
data should be part of the test data and vice versa).

Figure 2: Using two disjoint data sets for training the model and calculating the classification error leads to the so-called 
test error.

Calculating any form of error rate for a predictive model is called model validation. As we discussed, you 
need to validate your models before they go into production in order to decide if the expected model 
performance will be good enough for production. But the same model performance is also often used to 
guide your efforts to optimize the model parameters or select the best model type. It is very important to 
understand the difference between a training error and a test error. Remember that the training error is 
calculated by using the same data for training the model and calculating its error rate. For calculating 
the test error, you are using completely disjoint data sets for both tasks.
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Why You Should Ignore the Training Error
You will – unfortunately – find a lot of references in machine learning literature to training errors. This is 
a bad practice and should be avoided altogether. Training errors can be dangerously misleading!  Let’s 
demonstrate.

x1 x2 y

-0.6 0.3 positive

0.7 -0.1 negative

(…random…) (…random…) (…random…)

Table 3: A table with random data for the x-columns as well as for the classes in y. 

The image below shows a chart of this data with the two x-columns on the axes of the chart and the 
random values for y used as color:

Figure 3: This is a data set in 2 dimensions where all values are completely random, including the class y which is 
depicted with the colors red (positive) and blue (negative).



Performance Improvements in RapidMiner Studio

7rapidminer.com

Correct Model Validation

The data set we have used for this image is 1,000 rows large and is also equally distributed, i.e.there are 
the same amount of 500 positive and 500 negative rows in this data. Now think about this: this data is 
completely random for both the positions of the points and the color of the points. Do you think it is 
possible to build a predictive model for such a random data set?

In fact, it is not. If the data is truly random, there is no pattern to be found and hence no function can be 
trained. The best you can achieve is to either produce random predictions or just go with one of the two 
classes “positive” or “negative” in all cases.

And what kind of classification error should such a predictive model have? Well, this is easy. Both classes 
are equally distributed (500 out of 1,000 rows for each class) and if we always predict one class in all cas-
es, we should be correct in exactly half of all the cases and wrong for the other half, i.e. we should end 
up with a classification error of 50%.

So let’s do a little experiment and calculate the training error and test error for a widely used machine 
learning method, k-Nearest Neighbors. Here’s how this algorithm works: all data points from the training 
set are simply stored during the training phase. When the model is applied to a new data point, the 
predictive function looks for the k most similar data points in the stored training data and uses their 
classes (or the majority of the classes in case they are different.

And here is the result: the training error of the 1-Nearest Neighbor classifier is 0% (!) – a perfect 
classifier! And much better than the 50% error we have expected. How is this possible?

The reason is simple: if you apply a 1-Nearest Neighbor classifier on the same data you trained it on, 
the nearest neighbor for each point will always be the point itself. Which, of course, will lead to correct 
predictions in all cases, even though this is random data. But for data points which are not part of the 
training data, the randomness will kick in and the 0% classification error you hoped for will quickly turn 
into the 50% we expected. And this is exactly the kind of negative surprise you can get if you make 
the decision to go into production based on validating the model’s performance on the results of the 
training error. Using the training error gives you an inaccurate model validation.

Below is the RapidMiner Studio process we have used to calculate the training error for the 1-Nearest 
Neighbors classifier on the random data set. It delivers a 0% classification error. 



Performance Improvements in RapidMiner Studio

8rapidminer.com

Correct Model Validation

Figure 4: Calculating the training error of a 1-Nearest Neighbor classifier always leads to a 0% training error - even on 
complete random data. 

We can compare this 0% error of the 1-Nearest Neighbors classifier now to the test error calculated on a 
completely independent test set but following the same random data generation principles. The process 
below is using two disjoint data sets of random data, both with a size of 1,000 rows:

Figure 5: Calculating the test error of 1-Nearest Neighbors for random data shows a completely different picture: we get a 
test error of 51.5% - close to our expectation of 50%.complete random data.

This process actually delivers a test error of exactly 51.5% which is very close to our expected error of 
50%. You can see that the test error is a much better estimation about how your model will perform on 
unseen data than the training error which would give you the false believe of a perfect model.

Now, you might argue that a 1-Nearest Neighbor classifier is not a realistic approach (which I would 
argue against!) and that data typically is not random (which I would accept for many cases). So how do 
the training error and the test error look different for more realistic scenarios? The table below shows 
the difference between both error types for three different machine learning methods on four different 
datasets from the UCI data set repository for machine learning:
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Data Set Default Random Forest Logistic Regression 5-NN

Test Training Test Training Test Training

Diabetes 34.9% 32.6% 27.0% 32.6% 23.2% 28.7% 19.7%

Ionosphere 35.9% 17.1% 4.6% 18.1% 12.3% 21.9% 12.5%

Sonar 46.6% 32.3% 14.4% 29.0% 18.3% 25.8% 13.5%

Wine 22.6% 18.4% 14.5% 11.8% 10.1% 21.9% 10.2%

Avg. Dev. 9.98% 6.90% 10.60%

Table 4: The table shows the test and the training errors for three different machine learning methods on four different 
data sets. The differences are sometimes dramatic (up to 18%) with an average of almost 10%.

The column “default” is the error rate you would get if you went with just the majority class as prediction 
in all cases. You can clearly see that all machine learning methods have been able to improve the test 
error from the default error in all cases, so the model has clearly learned something useful. But you can 
also see how far off the training errors are – in fact, none of them would turn out to be true if you went 
into production. The test errors on the other hand will at least be very close to what you will observe in 
production. On average, the deviation between the two error types is about 10% - in one case, namely 
Random Forest on the Sonar data set, the difference went as high as 18%!Table 2: The table shows the 
test and the training errors for three different machine learning methods on four different data sets. 
The differences are sometimes dramatic (up to 18%) with an average of almost 10%.

One thing is very important: the best thing we can do is deliver an estimation about how well the model 
will perform in the future. If done in the right way, this estimation will be close to what can be achieved 
but there is no guarantee that the estimated performance will be exactly what can be expected.

In any case, however, the test error is a much better estimation about how well the model will perform 
for new and unseen cases in the future. The training error is not helpful at all, as we have clearly seen 
above. That’s why I recommend that you don’t use training errors at all. They are misleading because 
they always deliver an overly optimistic estimation about model accuracy.
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Validating Using Hold-Out Data Sets 

Now that we’ve established that using the training error is a terrible idea, let’s dive deeper into different 
ways how you can calculate test errors. The first thing to notice is that it is often very difficult or 
expensive to get more data where you have values for y. 

For example, if you create a model to predict which customers are more likely to churn, then you build 
the model on data about the people who have churned in the past. Generating more churn data is 
exactly what you try to prevent so this is not a good idea. Another example is a predictive maintenance 
use case where you predict if and when a machine needs maintenance or will fail. Nobody in the right 
mind will purposely break more machines just to create more training data!

So training data is expensive and generating more of it for testing is difficult. 

It is a good practice in such cases to use a part of the available data for training and a different part for 
testing the model. This part of the data used for testing is also called a hold-out data set. Practically all 
data science platforms have functions for performing this data split. In fact, below is the RapidMiner 
Studio process we have used to calculate the test errors for the data sets in the previous section:

Figure 6: The available training data is split into two disjoint parts, one is used for training and the other one for the 
testing model. 

Of course you have a conflict here.  Typically, a predictive model is better the more data it gets for train-
ing. So this would suggest to use as much data as possible for training. At the same time, you want to 
use as much data as possible for testing in order to get reliable test errors. Often a good practice is to 
use 70% of your data for training and the remaining 30% for testing.
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Cross-Validation as the Gold Standard 
Using a hold-out data set from your training data in order to calculate the test data is an excellent way 
to get a much more reliable estimation on the future accuracy of a model. But still there is a problem: 
how do we know that the hold-out set was not particularly easy for the model? It could be that the ran-
dom sample you selected is not so random after all, especially if you only have small training data sets 
available. You might end up with all the tough data rows for building the model and the easy ones for 
testing – or the other way round. In both cases your test error might be less representative of the model 
accuracy than you think.

One idea might be to just repeat the sampling of a hold-out set multiple times and use different samples 
each time for the hold-out set. For example, you might create 10 different hold-out sets and 10 different 
models on the remaining training data sets. And in the end you can just average those 10 different test 
errors and will end up with a better estimate which is less dependent on the actual sample of the test 
set. This procedure has a name – repeated hold-out testing. It was the standard way of validating mod-
els for some time, but nowadays it has been replaced by a different approach.

Although in principle the averaged test errors on the repeated hold-out sets are superior to a single test 
error on any particular test set, it still has one drawback: we will end up with some data rows being used 
in multiple of the test sets while other rows have not been used for testing at all. As a consequence, the 
errors you make on those repeated rows have a higher impact on the test error which is just another 
form of a bad selection bias. Hmm… what’s a good data scientist to do? 

The answer: k-fold cross-validation. 

With k-fold cross-validation you aren’t just creating multiple test samples repeatedly, but are dividing the 
complete dataset you have into k disjoint parts of the same size. You then train k different models on k-1 
parts each while you test those models always on the remaining part of data. If you do this for all k parts 
exactly once, you ensure that you use every data row equally often for training and exactly once for 
testing. And you still end up with k test errors similar to the repeated holdout set discussed above. The 
picture below shows how cross-validation works in principle:

Figure 7: Principle of a k-fold cross-validation. Divide the data into k disjoint parts and use each part exactly 
once for testing a model built on the remaining parts.
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For the reasons discussed above, a k-fold cross-validation is the go-to method whenever you want to 
validate the future accuracy of a predictive model. It is a simple method which guarantees you that there 
is no overlap between the training and test sets (which would be bad as we have seen above!) It also 
guarantees that there is no overlap between the k test sets which is good since it does not introduce 
any form of negative selection bias. And last but not least, the fact that you get multiple test errors 
for different test sets allows you to build an average and standard deviation for these test errors. This 
means that instead of getting a test error like 15% you will end up with an error average like 14.5% +/- 
2% giving you a better idea about the range the actual model accuracy will likely be in when put into 
production.
Despite all its obvious advantages, a proper cross-validation is still not implemented in all data science 
platforms on the market which is a shame and part of the reason why many data scientists fall into the 
traps we are discussing in this white paper. The images below show how to perform a cross validation in 
RapidMiner Studio:

Figure 8: A cross-validation operator in RapidMiner Studio. The operator takes care of creating the necessary data splits 

into k folds, training, testing, and the average building at the end.  

Figure 9: : The modular approach of RapidMiner Studio allows you to go inside of the cross-validation to change the 
model type, parameters, or even perform additional operations.

Before we move on to the next section, let’s now also perform a cross validation on our four data 
sets from above using our three machine learning models Random Forest, Logistic Regression, and a 
k-Nearest Neighbors learner with k=5. Here are the results:
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Data Sets Random Forest Logistic Regression 5-NN

Diabetes 27.6% +/- 4.5% 24.4% +/- 4.2% 28.3% +/- 3.0%

Ionosphere 8.8% +/- 5.2% 14.2% +/- 5.8% 15.7% +/- 4.8%

Sonar 33.3% +/- 9.3% 25.9% +/- 8.9% 19.3% +/- 12.6%

Wine 16.1% +/- 1.8% 10.9% +/- 3.4% 16.3% +/- 3.3%

Table 5: Test errors of three machine learning methods on four data sets. Calculated with a 10-fold cross-validation. Each 
cell shows the average test error of all folds plus the standard deviation. 

If you compare the averages test errors above with the single fold test errors we calculated before, 
you can see that the differences are sometimes quite high. In general, the single test errors are in the 
range of one standard deviation away from the average value delivered by the cross validation but the 
differences can still be dramatic (see for example Random Forest on Ionosphere). This is exactly the 
result of the selection bias and the reason you should always go with a cross-validation instead of a 
single calculation on only one hold-out data set.

But there is also a drawback which is the higher runtime. Performing a 10-fold cross-validation on your 
data means that you now need to build 10 models instead of one, which dramatically increases the 
computation time. If this becomes an issue, you will see the number of folds being decreased to values 
as little as 3 to 5 folds instead.

KEY TAKEAWAYS
•	 In machine learning, training a predictive model means finding a function which maps a set of values 

x to a value y.

•	 We can calculate how well such a model is doing by comparing the predicted values with the true 
values for y.

•	 If we apply the model on the data it was trained on, we can calculate the training error.

•	 If we calculate the error on data which was unknown in the training phase, we can calculate the test 
error.

•	 You should never use the training error for estimating how well a model will perform. In fact, it is 
better to not care at all about the training error.

•	 You can always build a hold-out set of your data not used for training in order to calculate the 
much more reliable test error Cross-validation is a perfect way to make full use of your data without 
leaking information into the training phase. It should be your standard approach for validating any 
predictive model.
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You learned in the previous section to calculate the predictive accuracy of a model by applying the 
model on data points it has not previously been trained on, and compare the model’s predictions with 
the known true result for this test set. If you repeat this multiple times for non-overlapping test cases, 
just like you do in case of the cross-validation, you end up with a reliable estimation about how well your 
model will perform on new cases. This approach in general is a good basis for doing model selection, 
i.e. answering the question which type of model (think: “random forest or linear regression?”) is going to 
perform best on my data in the future.

Accidental Contamination 	

 The test error becomes effectively a training error then and is lower than you would expect without 
the contamination. Therefore, all the efforts you did by using a cross-validation to avoid leakage of 
information is pointless if you are doing this wrong. And unfortunately, most data science platforms do 
not even support the correct way of performing a cross-validation in the proper way. This is the main 
reason why so many data scientists make this mistake.

Let’s talk show a few typical situations where accidental contamination of training data by leaking 
information about the test data can happen. This is by no means a complete list of examples, but it 
should be enough to give you the general idea about the problem and what to look for if you want to 
avoid this.

So all is good then, right? Wrong! The problem is that it is still very easy to leak information about 
the testing data into the training data if you perform a cross-validation in the wrong way. We call this 
phenomenon contamination of the training data. Contamination provides access to information the 
machine learning method should not have access to during training.  With contamination, the model will 
perform better than you expect it to perform when compared to situations when this information is not 
available.  This is exactly why accidental contamination leads to an over-optimistic estimation about how 
well the model will perform in the future.

This effect can be as drastic in the example of the k-Nearest Neighbor classifier above, where the 
training error (all information is available in this case) was 0% while the testing error was 50% and hence 
no better than randomly guessing the class of the data points.  As we will see below, the same effect 
happens if you leak information about the test data into the training phase. 
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Example 1: Contamination through 
Normalization 

Let’s start with a very common situation: you would like to normalize data so that all columns have 
a similar range and no column overshadows others. This is particularly important before using any 
similarity-based models like, for example, k-Nearest Neighbors.

This seems to be a simple task: just normalize the data and then train the model and validate it with a 
cross-validation. This is how this would look like in RapidMiner:

Figure 10:  This RapidMiner Studio process simply performs a normalization (z-transformation) on the data before the 

model is validated. The inner part of the cross-validation looks exactly like in Figure 9.

Looks good you say? Wrong! Because the approach shown in Figure 10 will lead to a wrong error 
estimation. If you normalize the data before the cross-validation, you actually leak information about the 
distribution of the test data into the way you normalize the training data. Although you are not using the 
test data for training the model, you nevertheless instill some information about it into the training data. 
This is exactly why we call this effect contamination.

What you should do instead is to perform the normalization inside of the cross-validation and only on 
the training data. You then take the information you gathered about the training data and use it for the 
transformation of the test data. This is where the RapidMiner Studio visual interface comes in handy 
since you can easily see the correct setup in the image below:

Figure 11: This is how you properly evaluate the impact of the normalization on the model accuracy. The parameters 
derived from the normalization on the training data are delivered into the test phase and used there instead of the other 
way around.
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Please note that we are feeding data directly into the cross-validation operator and performing all neces-
sary steps inside. The first thing you do in the training phase on the left is to normalize only the training 
data. The transformed data is then delivered to the machine learning method (Logistic Regression in 
this example). Both the predictive model and the transformation parameters from the normalization are 
then delivered into the testing phase on the right. Here we first transform the test data based on the 
distributions found in the training data before we apply the predictive model on the transformed test 
data. Finally, we calculate the error as usual.

The table below summarizes the cross-validated test errors, one time with the normalization performed 
before the cross-validation like in Figure 10 and one time with the normalization inside of the cross-vali-
dation like in Figure 11. It clearly shows the effect on the error if you validate the model without measur-
ing the impact of the data pre-processing itself.

Data Sets Random Forest Logistic Regression 5-NN

Wrong Nested Wrong Nested Wrong Nested

Diabetes 27.5% 27.5% 24.1% 29.6% 26.6% 28.1%

Ionosphere 11.4% 11.4% 15.7% 16.8% 15.4% 19.4%

Sonar 30.7% 30.7% 24.0% 32.2% 18.7% 26.0%

Wine 16.5% 16.5% 11.1% 11.9% 11.6% 12.2%

Avg. Dev. 0% 3.9% 3.4%

Table 6: The cross-validated test errors with a normalization before the cross-validation (“Wrong”) or inside. You can 
clearly see that the contamination of training data in the “Wrong” cases leads to overly optimistic error estimations. 

If the normalization is done before the cross-validation, the calculated error is too optimistic in all cases 
and the data scientist would run into a negative surprise when going into production. On average, the 
actual error is 3.9% higher for Logistic Regression and 3.4% higher for a k-Nearest Neighbors with k=5.  
The difference is 0% for Random Forest simply because the models do not change at all if the data is 
normalized or not. In general, you can see that the effect is not as drastic as just using the training error, 
but still there are differences of more than 8% in some of the cases, higher than most people would 
expect. This is caused by only validating the model itself and not the impact of the data pre-processing. 

A final thing which is important to notice: the model will actually perform roughly the same way in 
production, no matter if you perform the normalization outside or inside the cross-validation. When 
building a production model, you would typically use the complete dataset anyway and hence also apply 
the normalization on the complete data. But the performance of the model will be the lower one, pretty 
much in the range of the one shown in the column “Nested” in the table above. So the correct validation 
is not helping you create better models, instead it is telling you the truth about how well (or poorly) the 
model will work in production without letting you run into a catastrophic failure later on. 
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Example 2: Contamination through Parameter 
Optimization 
 
Next let’s look at the impact of optimizing parameters of the model, e.g., in case of Random Forest the 
number of trees in the ensemble or in the case of k-Nearest Neighbors the parameter k determining 
how many neighbors are used for finding the prediction. Data scientists often search for optimal 
parameters to improve a model’s performance. They can do this either manually by changing parameter 
values and measuring the change of the test error by cross-validating the model using the specified 
parameters. Or they can use automatic approaches like grid searches or evolutionary algorithms. The 
goal is to always find the best performing model for the data set at hand.  
 
As above in the case of normalization, using the cross-validated test errors found during this 
optimization sounds like a good plan to most data scientists – but unfortunately, it’s not. This should 
become immediately clear if you think of a (automatic) parameter optimization method just as another 
machine learning method which tries to adapt a prediction function to your data. If you only validate 
errors inside of this “bigger” machine learning method and deliver those errors to the outside, you 
effectively turn the inner test error into a kind of overly optimistic training error.

In case of parameter optimization, this is a well-known phenomenon in machine learning. If you select 
parameters so that the error on a given test set is minimized, you are optimizing this parameter setting 
for this particular test set only – hence this error is no longer representative for your model. Many data 
scientists suggest to use a so-called validation set in addition to a test set. So you can first use your test 
set for optimizing your parameter settings, and then you can use your validation set to validate the error 
of the parameter optimization plus the model on this set.

The problem with this validation set approach is that it comes with the same kind of single-test-set-
problems we discussed before. You won’t get all the advantages of a proper cross-validation if you use 
validation sets only.

But you can do this correctly by nesting multiple levels of cross-validation into each other. The inner 
cross-validation is used to determine the error for a specific parameter setting, and can be used inside 
of an automatic parameter optimization method. This parameter optimization becomes your new 
machine learning algorithm. Now you can simply wrap another, outer cross-validation around this 
automatic parameter optimization method to properly calculate the error which can be expected in 
production scenarios.
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Figure 12: Properly validating a parameter optimization requires two cross-validations, an inner one to guide the search 
for optimal parameters and an outer one (shown here) to validate those parameters on an independent validation set. 

Figure 13: Inside of the outer cross validation. In the training phase on the left is an automated search for an optimal 
parameter set which uses another, inner cross-validation (not shown). Then the optimal parameters are used for 
evaluating the final model. 

This sounds complex in writing but again a visual representation can help us to understand this correct 
setup. Figures 12 and 13 show the outer cross validation with the parameter optimization inside:
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As expected, the properly validated errors using the “Nested” approach as described above are higher 
than the errors taking directly out of the validation used for guiding the search (“Wrong” in the table 
above). But the differences are rather small with roughly 0.5% difference on average and a maximum 
deviation of 1%. But still, even a difference of 1% between your expectation and how well the model 
performs in production can be a huge and costly surprise.

Since the need for an independent validation set is somewhat known in machine learning, many people 
believe that the impact of correct validation on the errors must be quite high. But it turns out that while 
there definitely is an impact on the test errors, it is smaller than the impact on the correct test error in 
the normalization case above. The following table shows the results:

Data Sets Random Forest Logistic Regression k-NN

Wrong Nested Wrong Nested Wrong Nested

Diabetes 27.1% 27.5% 23.2% 23.6% 24.5% 25.5%

Ionosphere 8.3% 9.4% 12.0% 13.4% 16.0% 16.5%

Sonar 25.5% 25.5% 22.1% 22.1% 19.8% 19.8%

Wine 15.5% 15.7% 10.2% 10.7% 16.4% 16.5%

Avg. Dev. 0.4% 0.6% 0.4%

Table 7: We used an automatic grid search for parameter optimization. The column “Wrong” shows the naive approach 
of showing the cross-validated error which was delivered from the validation guiding the search. “Nested” shows the 
correct estimations.
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As a last example, let’s look at another pre-processing step which is frequently performed for optimizing 
the accuracy of machine learning models, namely feature selection. The goal is to select an optimal 
subset of features or data columns used by the model. In theory, many models can make this selection 
themselves, but in reality noisy columns can throw models off and it’s better to keep only those columns 
which provide meaningful information.

Similar to the parameter optimization, data scientists could manually select a subset of features and 
evaluate the model’s accuracy by calculating a cross-validated test error using only the data of the 
reduced feature set. Since the number of combinations grows exponentially with the number of 
columns in the input data, this isn’t often a feasible approach; the reason why automated optimization 
techniques are widely used. But just as in the case of parameter optimization, picking the optimal 
feature set is basically an extension of training the predictive model, and it needs to be properly 
validated as well.

Of course you could use an extra hold-out set for evaluating any built model at the end. But as before, 
you end up with the disadvantage of only using a single validation set. The better alternative is to nest 
the automatic feature selection (using an inner cross-validation to guide the search for the optimal set 
of features) into an outer cross-validation again, just as we did in case of the parameter optimization.

The correct setup starts with an outer cross-validation just as described above where we used an outer 
cross-validation to evaluate the performance of the parameter optimization. The inner setup of this 
cross-validation looks slightly different though, as follows:

Example 3: Contamination through Feature 
Selection 

Figure 14: An automatic evolutionary feature selection is used on the training data of the outer cross validation. The 
optimal feature set is selected before the model is trained and delivered to the test phase where it is applied again 

before prediction. 
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And here are the results for the wrong version of the cross-validation where you don’t properly validate 
the effect of the feature selection and only use the performance value of the optimal feature set as 
found during the optimization runs. The value in the columns “Nested” are determined with the correct 
approach using an outer cross-validation as depicted above:

Data Sets Random Forest Logistic Regression 5-NN

Wrong Nested Wrong Nested Wrong Nested

Diabetes 25.5% 26.3% 22.5% 23.6% 25.0% 26.2%

Ionosphere 7.1% 13.7% 16.5% 17.7% 8.8% 13.1%

Sonar 22.2% 26.7% 22.5% 23.7% 11.6% 22.6%

Wine 12.3% 12.3% 13.0% 13.0% 10.0% 10.1%

Avg. Dev. 3.0% 0.9% 4.2%

Table 8: We used an automatic evolutionary feature selection. The column “Wrong” shows the naive approach of showing 
the cross-validated error which was delivered from the validation guiding the search while “Nested” delivers the proper 
estimations. 

Here you see that the amount by which your expectations would be off is on average up to 4.2%. The 
largest deviation was even as high as 11% (5-NN on Sonar) – which is even higher than the maximum of 
8% we saw in the normalization case above. Think about this: your error in production would be double 
(22% vs. 11%) what you expected; just because you did not the right kind of validation which takes into 
account the effect of the data pre-processing. You can very easily avoid this type of negative surprise!

It is worth pointing out that the calculated average and maximum deviations greatly depend on the data 
sets and model types you use. We have seen above that the effect of the wrong validation for normal-
ization was zero for Random Forest since this model type does not care about the different scales of 
the data columns. On the other hand, the effect was larger for feature selection using a Random Forest. 
And this is the problem: you never know in advance how large the effect will really be. The only way to be 
prepared about what is coming in the future is to properly validate the effects of the model itself as well 
as all other optimizations with a correct form of modular, nested cross-validations.
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KEY TAKEAWAYS
•	 You can contaminate your training data set by applying data transformations before the cross-

validation which leads to information leakage about the test data into the complete data set.

•	  Think about pre-processing, parameter optimizations, or other (automatic) optimization schemes 
just as another form of machine learning trying to find the best predictive model.

•	 This “bigger” machine learning needs to be evaluated just like the actual machine learning method 
itself.

•	 Most data science products do not allow you to perform the model validation in a correct way, i.e. 
taking into account the effect of pre-processing or model optimizations.

•	 We have seen three examples showing how large the effect on model validation can be when done 
incorrectly.

•	 For an un-validated normalization, the effect is on average up to 3.9% with a maximum of 8%.

•	 For an un-validated parameter optimization, the effect is on average up to 0.6% with a maximum of 
1%.

•	 For an un-validated feature selection, the effect is on average up to 4.2% with a maximum of 11%.

•	 It is important to understand that these effects can be even higher for different data sets or different 
forms of un-validated pre-processing.

•	 The only way to avoid surprises when going into production is to properly validate before.
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Consequences of Accidental Contamination 
Just to be 100% clear: we are not saying that you cannot build a good model if you are not properly 
validating your models. You absolutely can, but without a proper validation you won’t be aware if your 
supposedly good model will be only mediocre before you go into production use – you will only realize 
this after you already are in production! And this can be a costly error as this section describes. The 
decision to go into production with a model should be based on a correct validation taking into account 
the effect of not just the model selection, but also of all things you do around the selection of the right 
model.

Let me start with two examples. Let’s first consider a machine learning model which is taking images 
from an MRI scan to detect malign tumor cells. It is amazing how machine learning can support doctors 
in identifying risk areas in the massive amounts of data those machines produce today. Although the 
final decision about treatment lies with the doctor, the identification of risk areas is heavily supported 
by algorithms. There are two types of mistakes the predictive model can make: the patient actually has 
cancer but it remains undetected, or the patient has no cancer but the model causes a false alarm. Now 
let’s assume that the data scientist made a cross-validation but accidentally contaminated the training 
data like we have described above. With this wrong validation, the machine learning model is found to 
only make errors in 0.1% of all cases. This is better than the performance of even the best doctors, so 
this model goes into production. The expectation is that only one out of a thousand patients will suffer 
from undetected cancer cells or from a false alarm (which of course still is the better case). But as it 
turns out, some contamination as described above led to an over-optimistic estimation, and a check 
with the first treated 1,000 patients showed that not one but one hundred patients actually have been 
misclassified. The error rate of this model was actually 10%, which would have been detected with 
a correct form of validation. Now a hundred people won’t receive the proper treatment because of 
undetected cancer cells or might suffer from a treatment they didn’t need.

Besides life-threatening outcomes, an over-optimistic validation might cause costly errors also in a 
business context. Let’s imagine a company is losing $200 Million per year due to customer churn. A 
machine learning model has been created and – with an improper validation – has shown to reduce this 
churn rate by 20%, i.e. by $40 Million if the right measurements are put into place for select customers. 
Those measurements incur costs of $20 Million, but given the reduction in churn volume of $40 Million, 
it’s still a very good investment.  But as it turns out, the model was not properly validated and after 
spending the $20 Million, the reduction in churn was only 5%, i.e. $10 Million revenue savings from 
reduced churn instead of the expected $40 Million. As a consequence, the expected $20 Million gain 
has turned into a real $10 Million loss. The decision for this unsuccessful investment would never have 
been made if the correct model accuracy would have been known beforehand. This is why doing the 
validation correctly, not just building great models, is so incredibly important.

KEY TAKEAWAYS
•	 Not doing a proper validation does not mean that your models are not performing.

•	 It means that your models look better than they will actually perform in practice.

•	 The negative consequences of this can be huge.
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If you perform the validation in programming languages like R or Python, you need to make sure that 
your code validates your model the correct way so that calculated errors are correct and not too 
optimistic. This is difficult and error-prone, and a common reason why visual products for data science 
like RapidMiner Studio are perfect for building the correct workflows as we have seen this in the Figures 
above. But it turns out that many visual products fall somewhat short in supporting proper model 
validation.

Any visual data science product needs four main components to perform correct validations:

1. Proper validation schemes like cross-validation: This should be table-stakes for all data science 
products by now, but it unfortunately is not.  Many visual products (like Alteryx) do not support cross-
validation for all the machine learning models they offer.  Products not offering this functionality should 
be avoided in all serious data science scenarios.

2. Modular validation schemes: This means that the cross-validated test error is not just delivered 
automatically or if a parameter of the machine learning method is switched on, but the validation 
method is explicitly modeled.  If the error is just delivered automatically (or requested by the user with a 
parameter setting), then this accuracy can only be used for the model selection itself, and is dangerous 
to be used for guiding any optimization around the model selection. New entrants in the data science 
market like Microsoft Azure Machine Learning or Dataiku fall short, and do not properly measure the 
impact of parameter changes or pre-processing methods like discussed above. Although this over-
simplified approach might be sufficient for dipping your toes into data science, it certainly leads to high 
risks for production usage. 

3. Multi-level nesting: To measure the effect of activities outside model selection, you need to be able 
to nest multiple cross-validations into each other.  This is especially true if you want to measure the 
impact on multiple optimizations simultaneously. You can perform a feature selection and a parameter 
optimization for the same model, using one inner cross-validation to guide the parameter optimization 
and feature selection, and an outer cross-validation to measure the impact of both optimizations.  Even 
long-time vendors in the data science market like SAS or IBM SPSS do not offer this functionality in 
their visual environments.  Others, like Datarobot, claim that they do the right thing “automagically”, 
but unfortunately in a completely hidden way so that you need to trust their black-box approach. 
Our experiences showed that betting on data science black boxes is rarely a good idea. Offering this 
functionality is what truly separates the most powerful products with more accurate (and honest) results 
from the mediocre ones. If you want the full confidence that your models will perform as expected, there 
is simply no way around a multi-level nesting approach for modular cross-validations.

As we have seen before, the problem is that most people only validate the model selection itself, not 
what happens around this selection. A common pattern is to perform data or model changes before 
you validate the model on the complete data set.  The examples above demonstrated this clearly, for 
example in the simple case of performing a data normalization before the model is evaluated in a cross-
validation.

How to Avoid Accidental Contamination 



4. Pre-processing models: The visual platform needs enough capabilities to apply exactly the same 
preprocessing you applied on the training data also on a different test data set. This is often relatively 
well-supported for simple preprocessing tasks like selecting a subset of features, but often there is no 
support for applying the same normalization factors (like mean and standard deviation values from the 
training data to apply the same z-Transformation) or other more complex data space transformations. 
Storing the necessary information for later application is what we call a pre-processing model. Most 
visual data science products do not support pre-processing models at all, while some products (like 
Knime) support at least the most basic transformations but not all the necessary transformations 
occurring in non-scientific scenarios.

As pointed out above, most visual data science products do unfortunately not support all four 
components – some do not even support the necessary basics like a cross-validation scheme for all 
machine learning methods. We have mentioned above specific products as examples, and explained 
where they fall short on at least one of these requirements.

This then forces you to either accept wrong and over-optimistic performance validations or alternatively 
start the error-prone process of coding the validation part yourself.  But this of course renders the 
benefits of the visual environment pretty much moot and is a very inefficient approach.
RapidMiner Studio is the only visual data science and machine learning product which is well-known for 
supporting all four components above. They are all a must to create correct validations that give you 
the necessary level of confidence in your models before you go into production usage with them. Don’t 
settle for less – millions of dollars (or even human lives) depend on the correct validation of your models 
and the predictions they deliver.

KEY TAKEAWAYS
•	 Pay attention if you code the validation with scripting languages like R or Python – you need to take 

care of the correct, non-contaminating validation yourself which can be complex.

•	 Many visual data science products fall short on the four necessary components for correct model 
validations.

•	 You need support for proper validation schemes like cross-validation.

•	 The validation methods need to be modular i.e. you can change what happens inside.

•	 The validation methods need to support multiple levels i.e. you can nest one validation into another.

•	 You need pre-processing models for all data transformations and other model optimizations.

•	 RapidMiner Studio is the only visual product supporting all four necessary elements for correct 
model validations.
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