
The Word Vector Tool and the
RapidMiner Text Plugin

User Guide

Operator Reference

Developer Tutorial

Michael Wurst, Ingo Mierswa

July 19, 2009

Copyright © 2001�2009

The Word Vector Tool and this Tutorial are published under the GNU Public License.

2

July 19, 2009

Contents

1 Introduction 7

2 Using the WVTool as Java Library 9

2.1 Installation . 9

2.2 De�ning the Input . 10

2.3 Con�guration . 11

2.4 Using Prede�ned Word Lists 14

3 The Word Vector Tool and RapidMiner 17

3.1 Installation . 17

3.2 The TextInput Operator . 17

3.2.1 De�ning the Steps for Word Vector Creation 18

3.3 Text Classi�cation, Clustering and Visualization 18

3.4 Parameter Optimization . 19

3.5 Creating and Maintaining Word Lists 19

3.5.1 Creating an Initial Word List 19

3.5.2 Applying a Word List 20

3.5.3 Updating a Word List 20

4 Advanced Topics 21

4.1 Web Crawling . 21

4.2 Using a Thesaurus . 23

4.2.1 Using a Simple Dictionary 23

4.2.2 Using Wordnet . 23

3

4 CONTENTS

4.2.3 Information Extraction 24

5 Performance 27

6 Aknowledgements 29

7 Appendix A - Java Example 33

8 Appendix B - RapidMiner Text Plugin Operator Reference 37

8.1 Text . 38

8.1.1 Crawler . 38

8.1.2 DictionaryStemmer . 39

8.1.3 EnglishStopwordFilter 39

8.1.4 FeatureExtraction . 40

8.1.5 GermanStemmer . 41

8.1.6 GermanStopwordFilter 42

8.1.7 LogFileSource . 42

8.1.8 LovinsStemmer . 43

8.1.9 MashUp . 44

8.1.10 NGramTokenizer . 45

8.1.11 PorterStemmer . 45

8.1.12 Segmenter . 46

8.1.13 ServerLog2Transactions 47

8.1.14 SingleTextInput . 47

8.1.15 SnowballStemmer . 49

8.1.16 SplitSegmenter . 49

8.1.17 StopwordFilterFile . 50

8.1.18 StringTextInput . 51

8.1.19 StringTokenizer . 53

8.1.20 TagLogSource . 53

8.1.21 TermNGramGenerator 54

8.1.22 TextInput . 54

July 19, 2009

CONTENTS 5

8.1.23 TextObjectTextInput 56

8.1.24 ToLowerCaseConverter 58

8.1.25 TokenLengthFilter . 58

8.1.26 TokenReplace . 59

The WVTool Tutorial

6 CONTENTS

July 19, 2009

Chapter 1

Introduction

The Word Vector ToolWVTool builds the core of the RapidMiner Text plugin
and is a �exible Java library for statistical language modeling. In particular it is
used to create word vector representations of text documents in the vector space
model [1]. In the vector space model, a document is represented by a vector
that denotes the relevance of a given set of terms for this document. Terms
are usually natural language words, but they can also be more general entities,
as words that are reduced to some linguistic base form or abstract concept as
�<number>� denoting any occurrence of a number in the text.

agent Java <number> ...

doc1.txt 1.0 0.3 0.0 ...

doc2.txt 0.9 0.0 0.6 ...

...

From the early days of automatic text processing and information retrieval, the
vector space model has played a very important role. It is the point of depar-
ture for many automatic text processing tasks, as text classi�cation, clustering,
characterization and summarization as well as information retrieval [2].

The aim of the Java WVTool is to provide a simple to use, simple to extend pure
Java library for creating word vectors. It can easily be invoked from any Java
application. Furthermore, the tool is tightly integrated with the RapidMiner

machine learning environment [3], allowing to perform diverse experiments using
textual data directly. In this way, the WVTool bridges a gap between highly
sophisticated linguistic packages as the GATE system [11] on the one side and
many partial solutions that are part of diverse text and information retrieval
applications on the other side. Closest related to the Word Vector Tool is the
Bow package [10], which is a C library, for the creation of word vectors and
clustering/classifying text.

7

8 CHAPTER 1. INTRODUCTION

In the next chapter, the basic concepts of the library are explained and how to use
it from Java applications. Chapter 3 discusses the RapidMiner integration.
In chapter 4 some advanced topics as using a web crawler or dictionaries are
introduced. Chapter 5 gives a brief overview of the performance of the WVTool
on a test corpus.

July 19, 2009

Chapter 2

Using the WVTool as Java

Library

The WVTool can be used as a standalone Java library or as plugin for the
RapidMiner data mining environment (here it is available under the name
Text plugin). In this section, we will �rst discuss the use of the WVTool as
library. In section 3 the use of the Text plugin of RapidMiner is discussed in
detail.

2.1 Installation

To use the WVTool as Java library, �rst obtain a copy of the WVTool from the
sourceforge WVTool homepage1, uncompress the archive and put the wvtool.jar
�le and all jar �les in the lib subdirectory into your classpath.

There are two basic operations the WVTool is able to perform: 1. Create a word
list (the dimensions of the vector space) from a set of text documents and 2.
Create word vectors from a set of texts (given a word list). A word list contains
all terms used for vectorization together with some statistics (e.g. in how many
documents a term appears). The word list is needed for vectorization to de�ne
which terms are considered as dimensions of the vector space and for weighting
purposes.

Both functions have two basic input parameters. First, an input list that tells
the system which text documents to process and second, a con�guration object,
that tells the system which methods to use in the individual steps.

1http://wvtool.sourceforge.net

9

10 CHAPTER 2. USING THE WVTOOL AS JAVA LIBRARY

2.2 De�ning the Input

The input list tells the WVTool which texts should be processed. Every item in
the list contains the following information:

� A URI to the text resource. Currently this can be a local �le/directory or
an URL
In the case of a directory, all �les in this directory are processed (not
recursing to subdirectories). As the WVTool is extendable, other types of
�le references could be used as well, as long as the user provides a method
that handles them (see 2.3)

� The language the document is written in (optional)

� The type of the document (optional)

� The character encoding of the document, e.g. UTF-8 (optional)

� A class label
Texts can be assigned to classes, such as topics. This information is
usually used for automatic text classi�cation, but could be relevant for
word vectorization as well. A class label index is ranging from 0 to m− 1,
where m is the number of classes (optional)

In the following example, an input list with three entries is created, two pointing
to documents on the local �le system and one pointing to a webpage.

//Initialize the input list with three classes

WVTFileInputList list = new WVTFileInputList(3);

//Add entries

list.addEntry(

new WVTDocumentInfo("data/alt.atheism",

"txt","","english",0));

list.addEntry(

new WVTDocumentInfo("data/soc.religion.christian",

"txt","","english",1));

list.addEntry(

new WVTDocumentInfo("http://www-ai.cs.uni-dortmund.de",

July 19, 2009

2.3. CONFIGURATION 11

"html","","english",2));

Every entry is assigned to one class.

2.3 Con�guration

The WVTool is written in a modular way, as to allow a maximum of �exibility
and extendibility. The general idea is, that vectorization and word list creation
consist of a �xed sequence of steps. For every step in the vectorization process,
the user states the Java class that should be used for this step. This class can
be one already included in the tool or a new one, written by the user. The only
constraint is, that it has to implement the corresponding interface of a given
step. In the following, these steps will be described in more detail together with
the available Java implementations:

� TextLoader
The TextLoader is responsible for opening a stream to the processed doc-
ument. Currently, the system provides one loader capable of reading from
local �les and URLs. The corresponding class is called UniversalLoader
and should be su�cient for most applications.

UniversalLoader - Loading texts from local �les and URLs (default)

� Decoder
If the text is encoded/wrapped (e.g. in HTML code), it has to be decoded
to plain text before vectorization. Currently, only plain text (no decod-
ing necessary) and XML based markup languages (tags are ignored) are
supported.

SimpleTagIgnoringReader - Removes tags from a �le without parsing
it.

XMLInputFilter - Parses the �le and removes tags from it.

TextInputFilter - Reads the �le as text �le.

PDFInputFilter - Extracts the text parts of a PDF �le.

SelectingInputFilter -Selects the input �lter automatically, based on
the �le su�x (default).

An important thing to note here is encoding. All readers, beside the
PDFInputFilter, evaluate the encoding information given for each entry in
the input list. If no (legal) encoding is given, the system default is used.
Note, that currently the encoding cannot be determined automatically for
XML and HTML �les.

The WVTool Tutorial

12 CHAPTER 2. USING THE WVTOOL AS JAVA LIBRARY

� CodeMapper
In some cases the encoding of a text has to be mapped to another encoding.
One might like to remove all the accents from a French text for instance
in this step. At the moment only a dummy class is available.

DummyCharConverter - does nothing (default).

� Tokenizer
The tokenizer splits the whole text into individual units. Tokenization
is a non-trivial task in general. Though for vectorization often a simple
heuristic is su�cient. Currently, only one tokenizer is available, which
uses the Unicode speci�cation to decide whether a character is a letter.
All non-letter characters are assumed to be separators, thus the resulting
tokens contain only letters. Additionally, there is a tokenizer that creates
character n-grams from given tokens.

SimpleTokenizer - tokenization based on letters and non-letters (de-
fault).

NGramTokenizer - creates character n-grams.

� WordFilter
In this step, tokens that should not be considered for vectorization are
�ltered. These are usually tokens appearing very often (referred to as
�stopwords�. Standard English and German stopword lists are included.
You may also specify the stopwords using a �le.

StopWordFilterFile - reads stop words from a �le.

StopWordsWrapper - a standard English stop word list (default).

StopWordsWrapperGerman - a standard German stop word list.

DummyWordFilter - does not �lter anything.

CombinedWordFilter - combines two or more word �lters in a disjunctive
way.

� Stemmer/Reducer
Often it is useful to map di�erent grammatical forms of a word to a com-
mon term. At the moment the system incorporates several di�erent stem-
ming algorithms: a Porter Stemmer, a Lovins Stemmer, a German Stem-
mer and the Snowball Stemmer package (providing stemmers for di�erent
languages, see [4]). Also, there is the possibility to de�ne additionally an
own dictionary or to use the Wordnet thesaurus (see 4.2).

LovinsStemmerWrapper - a Lovings stemmer (default)

PorterStemmerWrapper - a Porter Stemmer

SnowballStemmerWrapper - the Snowball stemmer package.You need to
de�ne the language of each text that is parsed, as the corresponding stem-
mer is chosen according to this information

July 19, 2009

2.3. CONFIGURATION 13

ToLowerCaseConverter - converts all characters in the word to lower
case

DictionaryStemmer - uses a manually speci�ed dictionary to reduce
words to a base form (see 4.2.1 for more information)

DummyStemmer - does not do anything

WordNetHypernymStemmer - uses Wordnet to replace a word by its hy-
pernym (see 4.2.2 for more information)

WordNetSynonymStemmer - uses Wordnet to replace a word by a repre-
sentative element of its synset (see 4.2.2 for more information)

� VectorCreation
After the tokens have been counted, the actual vectors have to be created.
There are di�erent schemes for doing this. They are based on the following
counts:

fij the number of occurrences of term i in document j
fdj the total number of terms occurring in document j
fti the total number of documents in which term i appears at least once

Based on these counts, currently four classes are available that measure
the �importance� of term i for document j, as denoted by vij :

TFIDF - the tf/idf measure with vij = fij

fdj
log(|D|

fti
), where |D| is the

total number of documents. The resulting vector for each document is
normalized to the Euclidean unit length (default).

TermFrequency - the relative frequency of a term in a document, vij =
fij

fdj
. The resulting vector for each document is normalized to the Euclidean

unit length.

TermOccurrences - the absolute number of occurrences of a term vij =
fij The resulting vector is not normalized.

BinaryOccurrences - occurrences as a binary value vij =

{
1, fij > 0
0, else

The resulting vector is not normalized.

� Output
The output steps determines where the resulting vectors are written to.
Currently, only writing them to a �le is supported. This step must be
con�gured, as there is no default where to write the vectors to.

The Operators in the Text plugin for RapidMiner allows you to specify which
java class to use for a given step by de�ning the single steps as inner operators.
This can be done in a static way (for each document the same java class is used)

The WVTool Tutorial

14 CHAPTER 2. USING THE WVTOOL AS JAVA LIBRARY

or dynamically (the java class is chosen depending on properties of the document,
such as the language or the encoding). The following are two examples. The
�rst example sets the java class for the output step in a static way.

FileWriter outFile = new FileWriter("wv.txt");

WordVectorWriter wvw = new WordVectorWriter(outFile, true);

config.setConfigurationRule(WVTConfiguration.STEP_OUTPUT,

new WVTConfigurationFact(wvw));

The second example selects the the stemming algorithm dynamically, depending
on the language the text document is written in:

final WVTStemmer dummyStemmer =

new DummyStemmer();

final WVTStemmer porterStemmer =

new PorterStemmerWrapper();

config.setConfigurationRule(WVTConfiguration.STEP_STEMMER,

new WVTConfigurationRule() {

public Object getMatchingComponent(WVTDocumentInfo d)

throws Exception {

if(d.getContentLanguage().equals("english"))

return porterStemmer;

else

return dummyStemmer;

}

});

By writing your own classes (implementing the corresponding interface) you can
use your own methods instead of the ones provide with the tool.

2.4 Using Prede�ned Word Lists

In some cases it is necessary to exactly de�ne the dimensions of the vector space,
yet leaving the counting of terms and documents to the WVTool . This can be

July 19, 2009

2.4. USING PREDEFINED WORD LISTS 15

achieved by calling the word list creation function with a list of String values as
in the following example (creating a word list with only two entries):

List dimensions = new Vector();

dimensions.add("apple");

dimensions.add("pc");

wordList =

wvt.createWordList(list, config, dimensions, false);

The last parameter determines whether additional terms occurring in the texts
should be added to the word list.

The WVTool Tutorial

16 CHAPTER 2. USING THE WVTOOL AS JAVA LIBRARY

July 19, 2009

Chapter 3

The Word Vector Tool and

RapidMiner

Instead of using theWVTool as a library, you can use it directly with the Rapid-
Miner system (formerly YALE, see [3]). RapidMiner provides a nice GUI to
specify the input and the con�guration for vector creation. In the following, it
is assumed that you are familiar with the basic concepts of the RapidMiner

environment.

Please note that the WVTool is available as part of the Text plugin of Rapid-
Miner.

3.1 Installation

The WVTool Plugin is installed by downloading the Text plugin jar �le from
the RapidMiner homepage 1 and putting it into lib/plugins directory of your
RapidMiner installation (see the RapidMiner Handbook for details). After
the plugin is installed, you see an additional category for operators �Text� in the
list of RapidMiner IO operators.

As a starting point, take a look at the examples of the Text Plugin, which you
will also �nd at the RapidMiner homepage.

3.2 The TextInput Operator

The TextInput operator creates an ExampleSet from a collection of texts. The
output ExampleSet contains one row for each text document and one column

1http://rapidminer.com

17

18 CHAPTER 3. THE WORD VECTOR TOOL AND RAPIDMINER

for each term.

The text collection must be speci�ed in one of two ways:

1. If the parameter list texts is speci�ed, each key-value pair must contain
the class label and the directory which holds the texts. In this case, the
entries in default_encoding, default_language and default_type are used
for all input documents.

2. Otherwise the operator expects an ExampleSet in its input. Up to four
regular attributes of this example set having special names and the label
are evaluated (see 2.2):

(a) document_source - A �le, directory, or URL specifying a (set of)
text(s)

(b) type - The document type

(c) encoding - The content encoding

(d) language - The content language

(e) the label attribute - The class label of the text(s)

3.2.1 De�ning the Steps for Word Vector Creation

Please note that you will have to add some inner operators as children to the
TextInput operator. Without these inner operators the text will not be processed
at all. Several operators exist, e.g. operators for tokenization or stemming. All
steps of the wector creation discussed above and available in the WVTool are
represented by RapidMiner operators and must be added as inner operators.

You can place breakpoints after each of these steps in order to check how they
work on your input data.

3.3 Text Classi�cation, Clustering and Visualization

As word vectors are stored in RapidMiner ExampleSets, you can use them in
almost any kind of RapidMiner experiment. For text classi�cation, the class
labels (e.g. positive, negative) are de�ned in the TextInput operator, as described
above. Using clustering or dimensionality reduction, there is a possibility to
directly visualize text documents from the RapidMiner Visualization panel.
Just double click on an item and a window pops up containing the corresponding
text. This is very useful, e.g. for outlier detection.

July 19, 2009

3.4. PARAMETER OPTIMIZATION 19

3.4 Parameter Optimization

As part of a RapidMiner experiment, you can optimize the parameters of
vector creation, such as the stemming algorithm or the pruning criteria. To do
this, simply surround the TextInput operator and its children by a parameter
optimization chain and perform some evaluation within this chain, e.g. text
classi�cation.

3.5 Creating and Maintaining Word Lists

For many applications it is useful to create and maintain word lists (and thus
the dimensions of the vector space) manually. The RapidMiner operator
InteractiveAttributeWeighting in combination with the TextInput and Corpus-
BasedWeighting provides this functionality.

Even more important is the possibility to de�ne the resulting word lists as a
parameter of the TextInput operator which can be written into a �le and be
reloaded later in application processes.

3.5.1 Creating an Initial Word List

An initial word list can be created by using the following chain of operators:
TextInput, CorpusBasedWeighting and InteractiveAttributeWeighting. The Tex-
tInput creates a initial word list. The CorpusBasedWeighting operator weights
every term in this list with respect to its relevance to the class label given as pa-
rameter. The weight for a given term is calculated by summing up the (tf/idf)
weights for this term over all documents in the class. The objective of this
method is to give terms a high weight, that are important for a speci�c class.
Using tf/idf the other classes can be used as background knowledge about how
important a term is in the whole corpus (though the operator can be used with
one class only). As the InteractiveAttributeWeighting operator is reached a win-
dow pops up that shows the word list. You can click on the bar above the table
to sort the terms either by their weight or alphabetically. Use the buttons beside
every term to select the keywords (by setting their weight to one or zero). After
you �nished store the word list with the save button. The resulting �le contains
lines of the following format:

<term>: <weight>

Hint: If you sort the terms according to their weight you can �nish your selection
if you think that no relevant terms will appear below in the list.

The WVTool Tutorial

20 CHAPTER 3. THE WORD VECTOR TOOL AND RAPIDMINER

3.5.2 Applying a Word List

You can apply a word list in two ways: To use the actual weights, �rst create word
vectors using the TextInput Operator and then use the AttributeWeightsLoader
and AttributesWeightsApplier on the resulting ExampleSet. To use the word list
only as a selection of relevant terms and leave it to the TextInput to actually
weight them, use the AttributeWeightsLoader before. The TextInput will create
vectors that contain as dimensions only terms in the word list, that have a weight
larger than zero.

3.5.3 Updating a Word List

If you add new documents to your corpus, usually additional terms will be relevant
and should be added to the word list. Use the experiment to create a word
list described in 3.5.1. After the InteractiveAttributeWeighting operator pops
up, use the load function to load your original word list. Make sure that the
�overwrite� parameter is set. In this way, values from the �le will overwrite
the ones that are generated by the TextInput. All terms for which you already
decided that they should or should not be in the word list are preserved. All new
terms will be between these values in the list (sorted according to their weight).

You can also use the combo box to choose which weights should be displayed.
After you �nished simply save the word list as described above.

July 19, 2009

Chapter 4

Advanced Topics

4.1 Web Crawling

The WVTool contains an interface to the WebSPHINX web crawler package
[7]. This enables you to obtain word vectors from webcontent easily. The
WebSPHINX package is very �exible and allows to con�gure the behavior of
the crawler in various ways. To use it with the WVTool , you must �rst create
a subclass of the abstract class WVToolCrawler. The additional methods you
must implement determine whether a link should be visited and whether a page
should be processed by the WVTool . The following is an example.

WVToolCrawler test = new WVToolCrawler() {

protected boolean vectorizePage(Page page) {

String url = page.getURL().toExternalForm();

return url.contains("PERSONAL")&&

url.contains("html")&&

(!url.contains("index"));

}

public boolean shouldVisit(Link link) {

return link.getPageURL().

toExternalForm().contains("PERSONAL");

}

};

URL start = new URL("http://www-ai.cs.uni-dortmund.de/PERSONAL");

21

22 CHAPTER 4. ADVANCED TOPICS

test.addRoot(new Link(start));

test.setMaxDepth(2);

The crawler visits only links, that point to an URL containing the term �PER-
SONAL�. A page is processed if its URL contains �PERSONAL� and �html� but
does not contain �index�. The crawler starts at a page provided by the add-
Root method. Also, the maximal depth of the crawler is set to 2. There are
many other possible checks in the WebSPHINX package, e.g. based on regular
expressions. Refer to the javadoc of WebSPHINX for more information.

Given the personalized web crawler, you need to create an input list based on
this crawler using the following code:

WVTInputList list = new CrawledInputList(test);

You can now use this input list just as the �le input list.

The crawler can also be invoked from RapidMiner.

To do so, add the Crawler operator to your experiment. Using the parameter
url, you may de�ne a at which url the crawler starts.

The crawler policy allows you to state rules, on whether the crawler should follow
a link and on whether it should vectorize a page. The following conditions are
possible:

visit_url A page is only visited if its url contains all terms stated in this param-
eter.

visit_content A page is only visited if its content contains all terms stated in
this parameter.

follow_url A link is only followed, if the target url contains all terms stated in
this parameter.

link_text A link is only followed, if the link text contains all terms stated in
this parameter.

If several expressions are given for the same condition, they are treated a dis-
junction. This allows to express DNF expressions for each individual condition.
Conditions of di�erent types are combined by conjunction, i.e. all of the have
to be ful�lled.

July 19, 2009

4.2. USING A THESAURUS 23

4.2 Using a Thesaurus

4.2.1 Using a Simple Dictionary

Instead of using a generic stemmer, you can provide the WVTool with a �le that
explicitly states which words should be reduced to which base forms. You may
for example specify that �2000� and �2K� should be both reduced to the same
term. Another example is that you would like to replace all numbers in the text
by the term �<number>�.

The DictionaryStemmer allows you to apply such rules easily. It expects as input
a �le in which each line has the following format:

<base_form>, <expression1> <expression2> ... <expressionn>

An expression is either a String or a regular expression. For regular expressions,
the Java RegExpression semantic is used1. The system �rst matches a word
against the �xed terms speci�ed in the �le. If there are di�erent matches, the
�rst one is used. If no match was found, the system checks the word against all
regular expressions in the order in which they appear in the �le. Again, the �rst
match is used.

4.2.2 Using Wordnet

The WVTool contains an interface to the popular Wordnet thesaurus [9] using
the Java Wordnet Library (JWNL)[8]. Using a thesaurus has several bene�ts for
text processing. It is, for instance, possible to map words with same meaning
to a single term. It might also make sense to replace words a hypernym, e.g.
�monday� by �weekday�.

To use Wordnet with the WVTool , you need a working installation of Wordnet
2.12. Also, you need a con�guration �le for JWNL. An example con�guration
�le can be found in the sample directory. Usually it should be su�cient to set
the correct path to your Wordnet dictionary directory (setting the parameter
dictionary_path). For more information on con�guring the JWNL please refer
to their homepage.

Currently, Wordnet is supported for the use in the stemmer step, thus to reduce
a word to some base form. The corresponding classes are called WordNetHy-
pernymStemmer and WordNetSynonymStemmer. Both �rst resolve the synset

1java.sun.com/docs/books/tutorial/extra/regex
2Can be obtained from [9]

The WVTool Tutorial

24 CHAPTER 4. ADVANCED TOPICS

of the given word. As the part of speech is usually not known, the Word Vector
Tool tries to resolve it �rst as noun, then as verb, adjective and adverb. For the
stemmer based on synonyms, the word is reduced to the �rst representative of
the synset, for hypernym based stemming it is reduced to the �rst hypernym of
the synset.

4.2.3 Information Extraction

TheWVTool is not intended to be a sophisticated information extraction system.
However it allows to state simple, but powerful queries to obtain structured
information from (semi-) structured data. Note, that this functionality is only
available in the RapidMiner version of the WVTool , i.e. in the Text plugin.

The tool supports two basic ways to extract information:

1. by regular expressions

2. by XPath queries

The latter one can only be applied to XML and HTML documents.

Extracting Information with Regular Expressions

A regular expression matches against a parts of an input text. In the WVTool ,
you specify the regular expressions using the parameter list attributes. Each line
contains an attribute name and a regular expression. The attribute name can be
freely chosen. If you put an # in front of the attribute name, the attribute will
be interpreted as numerical. In this case, several heuristics are used to extract
a number from the string that is matched. The second column contains the
regular expression. All regular expressions must follow the pattern �<regex>
<replacementPattern>�. The <regex> is just a standards regular expression.
It is matched against the input text and only the �rst match is returned. The
replacement pattern speci�es, how the �nal term is derived from the matched
expression. It should contain at least one expression of the form $<groupNr>,
that is replaced by the corresponding matching group. In the simplest case,
the replacement string is just $0, stating that the whole expression should be
used. Example: If the documents contains the text �Amount: 5�, the expression
�Amount: ([0-9]+) $1� would extract the value 5.

By default, structured information and word vectors are extracted. If you want
to use only extracted attributes, specify a min_occurrences that is higher than
the number of input documents to avoid that word vectors are created.

An additional hint, you can use the preview function to interactively deploy your
queries.

July 19, 2009

4.2. USING A THESAURUS 25

Extracting Information with XPath

While regular expressions are quite powerful on plain text, for information that
is highly structured, there are often more appropriate solutions. XPath is a
query language for xml documents. You can use XPath queries instead of reg-
ular expressions at all points in the WVTool (in which case you do not need a
replacement pattern). They are recognized as XPath, as they start with a �/�.

A common source of problems with XPath are namespaces. If your source xml
makes use of namespaces, you have to use them in your XPath expressions as
well (even if only a single namespace is used all over the document). You can
specify namespaces in the namespaces attribute by pairs of identi�ers (that you
then use in the XPath expression) and the namespace as de�ned in the xml
document.

Just as for regular expressions you can specify attributes as numerical by using
as pre�x. Expressions as �3,4 Euro� are parsed automatically (and yield 3.4
in this case).

Selecting the Text to Vectorize

You can use regular expressions and XPath also to specify which parts of the
document should be used for word vectorization (e.g. to only select the textual
description on a webpage). You do this specifying a regular expression or XPath
expression in the parameter text_query. The syntax is the same as for extracting
attributes. The only di�erence is, that all matches are used and concatenated,
instead of using only the �rst one.

Accessing Webservices

Many information sources on the web are available through a WebService API.
The MashUp Operator allows you to enrich an existing example set with addi-
tional attributes obtained from such a WebService. The most important param-
eter of this operator is url. In this parameter you specify the url under which the
service can be accessed. Most importantly, this url may contain expressions of
the form �<�<attribute>�>�. These expressions are replace by the value for the
attribute for each example in the example set. For each example in the example
set, one query is send to the WebService in this way. The result for each query
is parsed and the attributes speci�ed in the parameter attributes are extracted
and added to the example. The syntax for the extraction of attributes is the
same as in the WVTool . Again, be careful about namespaces!

A special function of the MashUp Operator is, that it allow to use the same
query twice. In this case, the result of the query is tokenized using the de-

The WVTool Tutorial

26 CHAPTER 4. ADVANCED TOPICS

limiters de�ned in the parameter delimiters and the tokens are assigned to
the attributes using this query. This allows to parse expressions like <posi-
tion>12,4;34,3</position> into two attributes.

July 19, 2009

Chapter 5

Performance

The WVTool has been designed and optimized for �exibility and extendibility
rather than for e�ciency. Nevertheless, it is well suited for large text corpora
in the sense that it keeps only the word list and the currently processed text
document in main memory. To give you an idea of the actual processing speed
of the Word Vector Tool the following table shows the processing times for
vectorizing the well known 20 newsgroups [6] data set, containing 20.000 news
articles.

WVTool WVTool (RapidMiner)

word list creation 138 s -

word vector creation 341 s -

both 479 s 642 s

For these experiments an Intel P4 with 2,6 GHz was used. For vector creation
the word list was pruned to contain only words appearing between 4 and 300
times.

27

28 CHAPTER 5. PERFORMANCE

July 19, 2009

Chapter 6

Aknowledgements

I would like to thank Ingo Mierswa and Simon Fischer for the �rst version of the
WVTool operator and the corresponding documentation, Stefan Haustein for
the TagIgnoringReader and the creators of the Snowball stemmer package[4],
Wordnet, PDFBox, FontBox, the Java Wordnet Library and WebSPHINX for
making their source code publically available.

29

30 CHAPTER 6. AKNOWLEDGEMENTS

July 19, 2009

Bibliography

[1] G. Salton, A. Wong, C. S. Yang: A vector space model for automatic index-
ing, Commun. ACM, 18, p. 613-620, 1975.

[2] R. Baeza-Yates, B. Ribeiro-Neto: Modern Information Retrieval; Taschen-
buch - 464 Seiten - Addison Wesley, 1999.

[3] I. Mierswa and M. Wurst, R. Klinkenberg, M. Scholz and T. Euler. YALE:
Rapid Prototyping for Complex Data Mining Tasks. In Proceedings of the
12th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD-06).

[4] http://snowball.tartarus.org/

[5] http://www.nzdl.org/Kea/

[6] http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups (originally
donated by T. Mitchell)

[7] http://www.cs.cmu.edu/ rcm/websphinx/

[8] http://jwordnet.sourceforge.net

[9] http://wordnet.princeton.edu

[10] A.K. McCallum: Bow: A toolkit for statistical lan-
guage modeling, text retrieval, classi�cation and clustering,
http://www.cs.cmu.edu/~mccallum/bow, 1996.

[11] H. Cunningham, K. Humphreys, Y. Wilks, R. Gaizauskas: Software Infras-
tructure for Natural Language Processing, Proceedings of the Fifth Confer-
ence on Applied Natural Language Processing (ANLP-97), 1997.

31

32 BIBLIOGRAPHY

July 19, 2009

Chapter 7

Appendix A - Java Example

The following is a complete example of how to invoke the WVTool from Java.

import java.io.BufferedReader;

import java.io.FileReader;

import java.io.FileWriter;

import java.util.List;

import java.util.Vector;

import edu.udo.cs.wvtool.config.WVTConfiguration;

import edu.udo.cs.wvtool.config.WVTConfigurationFact;

import edu.udo.cs.wvtool.generic.output.WordVectorWriter;

import edu.udo.cs.wvtool.generic.stemmer.DummyStemmer;

import edu.udo.cs.wvtool.generic.vectorcreation.TFIDF;

import edu.udo.cs.wvtool.generic.vectorcreation.TermOccurrences;

import edu.udo.cs.wvtool.main.WVTDocumentInfo;

import edu.udo.cs.wvtool.main.WVTInputList;

import edu.udo.cs.wvtool.main.WVTWordVector;

import edu.udo.cs.wvtool.main.WVTool;

import edu.udo.cs.wvtool.wordlist.WVTWordList;

/**

* An example program on how to use the Word Vector Tool.

*

* @author Michael Wurst

*

*/

public class WVToolExample {

33

34 CHAPTER 7. APPENDIX A - JAVA EXAMPLE

public static void main(String[] args) throws Exception {

// EXAMPLE HOW TO CALL THE PROGRAM FROM JAVA

// Initialize the WVTool

WVTool wvt = new WVTool(true);

// Initialize the configuration

WVTConfiguration config = new WVTConfiguration();

config.setConfigurationRule(WVTConfiguration.STEP_STEMMER,

new WVTConfigurationFact(new DummyStemmer()));

//Initialize the input list with two classes

WVTFileInputList list = new WVTFileInputList(2);

//Add entries

list.addEntry(

new WVTDocumentInfo("data/alt.atheism",

"txt","","english",0));

list.addEntry(

new WVTDocumentInfo("data/soc.religion.christian",

"txt","","english",1));

// Generate the word list

WVTWordList wordList = wvt.createWordList(list, config);

// Prune the word list

wordList.pruneByFrequency(2, 5);

// Store the word list in a file

wordList.storePlain(new FileWriter("wordlist.txt"));

// Alternatively: read an already created word list from a file

// WVTWordList wordList2 =

// new WVTWordList(

// new FileReader("/home/wurst/tmp/wordlisttest.txt"));

// Create the word vectors

July 19, 2009

35

// Set up an output filter (write sparse vectors to a file)

FileWriter outFile = new FileWriter("wv.txt");

WordVectorWriter wvw = new WordVectorWriter(outFile, true);

config.setConfigurationRule(

WVTConfiguration.STEP_OUTPUT,

new WVTConfigurationFact(wvw));

config.setConfigurationRule(WVTConfiguration.STEP_VECTOR_CREATION,

new WVTConfigurationFact(new TFIDF()));

// Create the vectors

wvt.createVectors(list, config, wordList);

// Alternatively: create word list and vectors together

//wvt.createVectors(list, config);

// Close the output file

wvw.close();

outFile.close();

// Just for demonstration: Create a vector from a String

WVTWordVector q =

wvt.createVector("cmu harvard net", wordList);

}

}

The WVTool Tutorial

36 CHAPTER 7. APPENDIX A - JAVA EXAMPLE

July 19, 2009

Chapter 8

Appendix B - RapidMiner

Text Plugin Operator

Reference

This chapter describes the Word Vector operators of the RapidMiner Text
plugin.

37

38
CHAPTER 8. APPENDIX B - RAPIDMINER TEXT PLUGIN OPERATOR

REFERENCE

8.1 Text

This section describes the text related operators of the WVTool plugin.

8.1.1 Crawler

Group: IO.Web

Generated output:

� ExampleSet

� NumericalMatrix

Parameters:

� url: Speci�es the url at which the crawler should start (string)

� crawling_rules: Speci�es a set of rules that determine, which links to
follow and which pages to process (see tutorial for details) (list)

� max_depth: Speci�es the maximal depth of the crawling process (integer;
0-+∞; default: 2)

� delay: Speci�es the delay when vistiting a page in milleseconds (integer;
0-+∞; default: 1000)

� max_threads: Speci�es the number of crawling threads working in parallel
(integer; 1-+∞; default: 1)

� output_dir: Speci�es the directory to which to write the �les (�lename)

� extension: Speci�es the extension of the stored �les (string; default: 'txt')

� max_page_size: Speci�es the maximum page size (in KB): pages larger
than this limit are not downloaded (integer; 1-+∞; default: 100)

� user_agent: The identity the crawler uses while accessing a server (string;
default: 'rapid-miner-crawler')

� obey_robot_exclusion: Speci�es whether the crawler obeys the rules,
which pages on site might be visited by a robot. Disable only if you know
what you are doing and if you a sure not to violate any existing laws by
doing so (boolean; default: true)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

July 19, 2009

8.1. TEXT 39

Short description: Crawls a set of web resources and writes them to a local
directory.

Description:

8.1.2 DictionaryStemmer

Group: IO.Text.Stemmer

Required input:

� TokenSequence

Generated output:

� TokenSequence

Parameters:

� �le: File that contains the dictionary. See operator reference for the �le
format. (�lename)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Replaces terms by pattern matching rules.

Description:

8.1.3 EnglishStopwordFilter

Group: IO.Text.Filter

Required input:

� TokenSequence

Generated output:

� TokenSequence

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

The WVTool Tutorial

40
CHAPTER 8. APPENDIX B - RAPIDMINER TEXT PLUGIN OPERATOR

REFERENCE

Short description: Standard stopwords list for English texts.

Description:

8.1.4 FeatureExtraction

Group: IO.Text

Generated output:

� ExampleSet

Parameters:

� preview: Shows a preview for the results which will be achieved by the
current con�guration.

� texts: Speci�es a list of class/directory pairs. (list)

� default_content_type: The default content type if not speci�ed by the
example set (possible values: pdf, html, htm, xml, text, txt). (string;
default: �)

� default_content_encoding: The default content encoding if not speci-
�ed by the example set (only encodings supported by Java can be used).
(string; default: �)

� default_content_language: The default content language if not speci-
�ed by the example set. (string; default: �)

� use_content_attributes: If set to true, the returned example set will con-
tain content type, encoding, and language attributes. (boolean; default:
false)

� id_attribute_type: Indicates if long ids (complete paths), short ids (last
part of the source name), or numerical ids will be used.

� attributes: Speci�es a list of attribute names and extraction queries. These
queries can be XPath or a regular expression. If a regular expression
is used, the query must have the following form: '<regex-expression>
<replacement-pattern>', where the <replacement_pattern> states how
a match is replaced to generate the �nal information. '$1' would yield
the �rst matching group as result. A number sign in front of an attribute
name marks the attribute as numeric. In these cases, the operator uses
di�erent heuristicts to parse a number from the extracted string. An ! in
front of an attribute name marks it as binary. For both XPath and regex,
only the �rst match is used. (list)

July 19, 2009

8.1. TEXT 41

� namespaces: Speci�es pairs of identi�er and namespace for use in XPath
queries. The namespace for (x)html is bound automatically to the identi�er
h. (list)

� extractor_class: Full reference to class that performs additional informa-
tion extraction. This class must be a subclass of FeatureExtractor. (string)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Extracts values from structured and unstructured sources
using XPath expressions or regular expressions.

Description:

8.1.5 GermanStemmer

Group: IO.Text.Stemmer

Required input:

� TokenSequence

Generated output:

� TokenSequence

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: A stemmer for German texts.

Description:

The WVTool Tutorial

42
CHAPTER 8. APPENDIX B - RAPIDMINER TEXT PLUGIN OPERATOR

REFERENCE

8.1.6 GermanStopwordFilter

Group: IO.Text.Filter

Required input:

� TokenSequence

Generated output:

� TokenSequence

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Standard stopwords list for German texts.

Description:

8.1.7 LogFileSource

Group: IO.Web

Generated output:

� ExampleSet

Parameters:

� con�g_�le: the format con�guration �le (�lename)

� log_dir: the directory containing the log �les (�lename)

� dns_lookup: Perform reverse dns lookup on the client ip (boolean; default:
false)

� robot_�lter: �le that contains regular expressions on user agents that
should be �ltered out. Each line must contain exactly one regular ex-
pression. (�lename)

� �letype_�lter: �le that contains regular expressions on �les that should
be �ltered out. Each line must contain exactly one regular expression.
(string)

� only_HTTP_200: Consider only entries with HTTP Response code 200
(boolean; default: false)

July 19, 2009

8.1. TEXT 43

� browser_matcher: �le that contains regular expressions to match browser
types. Each line must contain exactly an expression of the form <name>:<regular
expression>. (list)

� os_matcher: �le that contains regular expressions to match os types. Each
line must contain exactly an expression of the form <name>:<regular
expression>. (list)

� language_matcher: �le that contains regular expressions to match lan-
guages. Each line must contain exactly an expression of the form <name>:<regular
expression>. (list)

� session_timeout: Time between two requests from the same source, such
that the second request can be assumed to be a new session (integer;
0-+∞; default: 400000)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Reads a web server log �le.

Description:

8.1.8 LovinsStemmer

Group: IO.Text.Stemmer

Required input:

� TokenSequence

Generated output:

� TokenSequence

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: The Lovins stemmer for English texts.

The WVTool Tutorial

44
CHAPTER 8. APPENDIX B - RAPIDMINER TEXT PLUGIN OPERATOR

REFERENCE

Description:

8.1.9 MashUp

Group: IO.Web

Required input:

� ExampleSet

Parameters:

� attributes: Speci�es a list of attribute names and extraction queries. These
queries can be XPath or a regular expression. If a regular expression
is used, the query must have the following form: '<regex-expression>
<replacement-pattern>', where the <replacement_pattern> states how
a match is replaced to generate the �nal information. '$1' would yield
the �rst matching group as result. A number sign in front of an attribute
name marks the attribute as numeric. In these cases, the operator uses
di�erent heuristicts to parse a number from the extracted string. An ! in
front of an attribute name marks it as binary. For both XPath and regex,
only the �rst match is used. (list)

� namespaces: Speci�es pairs of identi�er and namespace for use in XPath
queries. The namespace for (x)html is bound automatically to the identi�er
h. (list)

� url: The url of the HTTP GET based service. This URL may contain
terms of the form <attributeName> that are replaced by the value of the
corresonding attribute before invoking the query. (string)

� separators: Characters used to separate entries in the result �eld obtained
by XPath or regular expression. (string)

� delay: Amount of milliseconds to wait between requests (integer; 0-+∞;
default: 0)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Extracts information from a HTTP GET based web re-
source.

July 19, 2009

8.1. TEXT 45

Description:

8.1.10 NGramTokenizer

Group: IO.Text.Tokenizer

Required input:

� TokenSequence

Generated output:

� TokenSequence

Parameters:

� length: The maximal length of the ngrams. (integer; 1-+∞; default: 3)

� keep_terms: Indicates if the original terms should be kept along with the
ngrams. (boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Creates ngrams of the input token stream.

Description:

8.1.11 PorterStemmer

Group: IO.Text.Stemmer

Required input:

� TokenSequence

Generated output:

� TokenSequence

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

The WVTool Tutorial

46
CHAPTER 8. APPENDIX B - RAPIDMINER TEXT PLUGIN OPERATOR

REFERENCE

Short description: The Porter stemmer for English texts.

Description:

8.1.12 Segmenter

Group: IO.Text.Misc

Parameters:

� preview: Shows a preview for the results which will be achieved by the
current con�guration.

� texts: A directory containing the documents to be segmented (�lename)

� content_type: The content type of the input texts (txt, xml, html) (string)

� output: The directory to which to write the segments (�lename)

� expression: Speci�es a regular expression or XPath expression that matches
against substrings of the content which should be treated as individual
segments. The syntax is the same as for attribute extraction (see WVTool
operator), but instead of extracting only the �rst match, all matches are
extracted and written to individual �les (string)

� ignore_cdata: Speci�es whether CDATA should be ignored when parsing
HTML (boolean; default: true)

� namespaces: Speci�es pairs of identi�er and namespace for use in XPath
queries. The namespace for (x)html is bound automatically to the identi�er
h. (list)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Segments documents based on regular expressions or xpath.

Description:

July 19, 2009

8.1. TEXT 47

8.1.13 ServerLog2Transactions

Group: IO.Web

Required input:

� ExampleSet

Generated output:

� ExampleSet

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Converts an example set containing a server log to trans-
actions

Description:

8.1.14 SingleTextInput

Group: IO.Text

Generated output:

� ExampleSet

� WordList

Parameters:

� text: The input text. (string)

� default_content_type: The default content type if not speci�ed by the
example set (possible values: pdf, html, htm, xml, text, txt). (string;
default: �)

� default_content_encoding: The default content encoding if not speci-
�ed by the example set (only encodings supported by Java can be used).
(string; default: �)

� default_content_language: The default content language if not speci-
�ed by the example set. (string; default: �)

The WVTool Tutorial

48
CHAPTER 8. APPENDIX B - RAPIDMINER TEXT PLUGIN OPERATOR

REFERENCE

� prune_below: Prune words that appear inat most that many documents.
-1 for no pruning. Alternatively you can provide a percentage value, denot-
ing the lowest document frequency in p words with the highest frequency.
(string; default: '-1')

� prune_above: Prune words that appear in at least that many documents.
-1 for no pruning. Alternatively you can provide a percentage value, denot-
ing the highest document frequency in p words with the lowest frequency.
(string; default: '-1')

� vector_creation: Method used to create word vectors

� use_content_attributes: If set to true, the returned example set will con-
tain content type, encoding, and language attributes. (boolean; default:
false)

� use_given_word_list: If set, the given word of list in the input will be
used (boolean; default: false)

� input_word_list: Load a word list from this �le instead of creating it from
the input data. (�lename)

� return_word_list: If checked the word list will be returned as part of the
result. (boolean; default: false)

� output_word_list: Save the used word list into this �le. (�lename)

� id_attribute_type: Indicates if long ids (complete paths), short ids (last
part of the source name), or numerical ids will be used.

� namespaces: Speci�es pairs of identi�er and namespace for use in XPath
queries. The namespace for (x)html is bound automatically to the identi�er
h. (list)

� text_query: Query that extracts the parts of a document, that should
be used for vectorization. This query can be XPath or a regular expres-
sion. If a regular expression is used, the query must have the follow-
ing form: '<regex-expression> <replacement-pattern>', where the <re-
placement_pattern> states how a match is replaced to generate the �nal
information. '$1' would yield the �rst matching group as result. For
both, XPath and regular expression, all matches are concatanated and
then passed to the vectorization process. (string)

� create_text_visualizer: Indicates if a text speci�c object visualizer should
be created which can be used in plotters etc. Note: Text visualization does
not work for id type number. (boolean; default: false)

� on_the_�y_pruning: Denotes after how many documents, singular terms
should be removed from the word list. 0 indicates no pruning. (integer;
0-+∞; default: -1)

Values:

July 19, 2009

8.1. TEXT 49

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Inner operators: The inner operators must be able to handle [TokenSequence]
and must deliver [TokenSequence].

Short description: Generates word vectors from a single text.

Description:

8.1.15 SnowballStemmer

Group: IO.Text.Stemmer

Required input:

� TokenSequence

Generated output:

� TokenSequence

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: The Snowball stemmer for di�erent languages.

Description:

8.1.16 SplitSegmenter

Group: IO.Text.Misc

Parameters:

� preview: Shows a preview for the results which will be achieved by the
current con�guration.

The WVTool Tutorial

50
CHAPTER 8. APPENDIX B - RAPIDMINER TEXT PLUGIN OPERATOR

REFERENCE

� texts: A directory containing the documents to be segmented (�lename)

� output: The directory to which to write the segments (�lename)

� split_expression: Speci�es a regular expression or XPath expression that
matches against substrings of the content which should be treated as
individual segments. The syntax is the same as for attribute extraction
(see WVTool operator), but instead of extracting only the �rst match, all
matches are extracted and written to individual �les (string)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Segments documents by de�ning the splitting point.

Description:

8.1.17 StopwordFilterFile

Group: IO.Text.Filter

Required input:

� TokenSequence

Generated output:

� TokenSequence

Parameters:

� �le: File that contains the stopwords one per line (�lename)

� case_sensitive: Should words be matched case sensitive (boolean; default:
false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Filters terms based on a list of expressions provided in an
external �le.

July 19, 2009

8.1. TEXT 51

Description:

8.1.18 StringTextInput

Group: IO.Text

Required input:

� ExampleSet

Generated output:

� ExampleSet

� WordList

Parameters:

� �lter_nominal_attributes: Indicates if nominal attributes should also be
�ltered in addition to string attributes. (boolean; default: false)

� remove_original_attributes: Indicates if the original nominal and / or
string attributes should also be removed after the word vector creation.
(boolean; default: false)

� default_content_type: The default content type if not speci�ed by the
example set (possible values: pdf, html, htm, xml, text, txt). (string;
default: �)

� default_content_encoding: The default content encoding if not speci-
�ed by the example set (only encodings supported by Java can be used).
(string; default: �)

� default_content_language: The default content language if not speci-
�ed by the example set. (string; default: �)

� prune_below: Prune words that appear inat most that many documents.
-1 for no pruning. Alternatively you can provide a percentage value, denot-
ing the lowest document frequency in p words with the highest frequency.
(string; default: '-1')

� prune_above: Prune words that appear in at least that many documents.
-1 for no pruning. Alternatively you can provide a percentage value, denot-
ing the highest document frequency in p words with the lowest frequency.
(string; default: '-1')

� vector_creation: Method used to create word vectors

� use_content_attributes: If set to true, the returned example set will con-
tain content type, encoding, and language attributes. (boolean; default:
false)

� use_given_word_list: If set, the given word of list in the input will be
used (boolean; default: false)

The WVTool Tutorial

52
CHAPTER 8. APPENDIX B - RAPIDMINER TEXT PLUGIN OPERATOR

REFERENCE

� input_word_list: Load a word list from this �le instead of creating it from
the input data. (�lename)

� return_word_list: If checked the word list will be returned as part of the
result. (boolean; default: false)

� output_word_list: Save the used word list into this �le. (�lename)

� id_attribute_type: Indicates if long ids (complete paths), short ids (last
part of the source name), or numerical ids will be used.

� namespaces: Speci�es pairs of identi�er and namespace for use in XPath
queries. The namespace for (x)html is bound automatically to the identi�er
h. (list)

� text_query: Query that extracts the parts of a document, that should
be used for vectorization. This query can be XPath or a regular expres-
sion. If a regular expression is used, the query must have the follow-
ing form: '<regex-expression> <replacement-pattern>', where the <re-
placement_pattern> states how a match is replaced to generate the �nal
information. '$1' would yield the �rst matching group as result. For
both, XPath and regular expression, all matches are concatanated and
then passed to the vectorization process. (string)

� create_text_visualizer: Indicates if a text speci�c object visualizer should
be created which can be used in plotters etc. Note: Text visualization does
not work for id type number. (boolean; default: false)

� on_the_�y_pruning: Denotes after how many documents, singular terms
should be removed from the word list. 0 indicates no pruning. (integer;
0-+∞; default: -1)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Inner operators: The inner operators must be able to handle [TokenSequence]
and must deliver [TokenSequence].

Short description: Generates word vectors from string attributes.

Description:

July 19, 2009

8.1. TEXT 53

8.1.19 StringTokenizer

Group: IO.Text.Tokenizer

Required input:

� TokenSequence

Generated output:

� TokenSequence

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Tokenizes a set of input tokens.

Description:

8.1.20 TagLogSource

Group: IO.Web

Generated output:

� ExampleSet

Parameters:

� tag_log�le: the tag log �le (�lename)

� min_occurrences: minimal number of occurrences of a tag to be consid-
ered (integer; 1-+∞; default: 100)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Reads a tag log �le.

The WVTool Tutorial

54
CHAPTER 8. APPENDIX B - RAPIDMINER TEXT PLUGIN OPERATOR

REFERENCE

Description:

8.1.21 TermNGramGenerator

Group: IO.Text.Tokenizer

Required input:

� TokenSequence

Generated output:

� TokenSequence

Parameters:

� max_length: The maximal length of the ngrams. (integer; 1-+∞; default:
2)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Creates term ngrams of the input token stream.

Description:

8.1.22 TextInput

Group: IO.Text

Generated output:

� ExampleSet

� WordList

Parameters:

� texts: Speci�es a list of class/directory pairs. (list)

� default_content_type: The default content type if not speci�ed by the
example set (possible values: pdf, html, htm, xml, text, txt). (string;
default: �)

July 19, 2009

8.1. TEXT 55

� default_content_encoding: The default content encoding if not speci-
�ed by the example set (only encodings supported by Java can be used).
(string; default: �)

� default_content_language: The default content language if not speci-
�ed by the example set. (string; default: �)

� prune_below: Prune words that appear inat most that many documents.
-1 for no pruning. Alternatively you can provide a percentage value, denot-
ing the lowest document frequency in p words with the highest frequency.
(string; default: '-1')

� prune_above: Prune words that appear in at least that many documents.
-1 for no pruning. Alternatively you can provide a percentage value, denot-
ing the highest document frequency in p words with the lowest frequency.
(string; default: '-1')

� vector_creation: Method used to create word vectors

� use_content_attributes: If set to true, the returned example set will con-
tain content type, encoding, and language attributes. (boolean; default:
false)

� use_given_word_list: If set, the given word of list in the input will be
used (boolean; default: false)

� input_word_list: Load a word list from this �le instead of creating it from
the input data. (�lename)

� return_word_list: If checked the word list will be returned as part of the
result. (boolean; default: false)

� output_word_list: Save the used word list into this �le. (�lename)

� id_attribute_type: Indicates if long ids (complete paths), short ids (last
part of the source name), or numerical ids will be used.

� namespaces: Speci�es pairs of identi�er and namespace for use in XPath
queries. The namespace for (x)html is bound automatically to the identi�er
h. (list)

� text_query: Query that extracts the parts of a document, that should
be used for vectorization. This query can be XPath or a regular expres-
sion. If a regular expression is used, the query must have the follow-
ing form: '<regex-expression> <replacement-pattern>', where the <re-
placement_pattern> states how a match is replaced to generate the �nal
information. '$1' would yield the �rst matching group as result. For
both, XPath and regular expression, all matches are concatanated and
then passed to the vectorization process. (string)

� create_text_visualizer: Indicates if a text speci�c object visualizer should
be created which can be used in plotters etc. Note: Text visualization does
not work for id type number. (boolean; default: false)

The WVTool Tutorial

56
CHAPTER 8. APPENDIX B - RAPIDMINER TEXT PLUGIN OPERATOR

REFERENCE

� on_the_�y_pruning: Denotes after how many documents, singular terms
should be removed from the word list. 0 indicates no pruning. (integer;
0-+∞; default: -1)

� extend_exampleset: If true, an input example set is not only used to
specify the documents that should be vectorized, but this example set is
merged with the vectors. Note, that this works only with nominal ids!
(boolean; default: false)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Inner operators: The inner operators must be able to handle [TokenSequence]
and must deliver [TokenSequence].

Short description: Generates word vectors from text collections.

Description:

8.1.23 TextObjectTextInput

Group: IO.Text

Generated output:

� ExampleSet

� WordList

Parameters:

� default_content_type: The default content type if not speci�ed by the
example set (possible values: pdf, html, htm, xml, text, txt). (string;
default: �)

� default_content_encoding: The default content encoding if not speci-
�ed by the example set (only encodings supported by Java can be used).
(string; default: �)

� default_content_language: The default content language if not speci-
�ed by the example set. (string; default: �)

July 19, 2009

8.1. TEXT 57

� prune_below: Prune words that appear inat most that many documents.
-1 for no pruning. Alternatively you can provide a percentage value, denot-
ing the lowest document frequency in p words with the highest frequency.
(string; default: '-1')

� prune_above: Prune words that appear in at least that many documents.
-1 for no pruning. Alternatively you can provide a percentage value, denot-
ing the highest document frequency in p words with the lowest frequency.
(string; default: '-1')

� vector_creation: Method used to create word vectors

� use_content_attributes: If set to true, the returned example set will con-
tain content type, encoding, and language attributes. (boolean; default:
false)

� use_given_word_list: If set, the given word of list in the input will be
used (boolean; default: false)

� input_word_list: Load a word list from this �le instead of creating it from
the input data. (�lename)

� return_word_list: If checked the word list will be returned as part of the
result. (boolean; default: false)

� output_word_list: Save the used word list into this �le. (�lename)

� id_attribute_type: Indicates if long ids (complete paths), short ids (last
part of the source name), or numerical ids will be used.

� namespaces: Speci�es pairs of identi�er and namespace for use in XPath
queries. The namespace for (x)html is bound automatically to the identi�er
h. (list)

� text_query: Query that extracts the parts of a document, that should
be used for vectorization. This query can be XPath or a regular expres-
sion. If a regular expression is used, the query must have the follow-
ing form: '<regex-expression> <replacement-pattern>', where the <re-
placement_pattern> states how a match is replaced to generate the �nal
information. '$1' would yield the �rst matching group as result. For
both, XPath and regular expression, all matches are concatanated and
then passed to the vectorization process. (string)

� create_text_visualizer: Indicates if a text speci�c object visualizer should
be created which can be used in plotters etc. Note: Text visualization does
not work for id type number. (boolean; default: false)

� on_the_�y_pruning: Denotes after how many documents, singular terms
should be removed from the word list. 0 indicates no pruning. (integer;
0-+∞; default: -1)

Values:

The WVTool Tutorial

58
CHAPTER 8. APPENDIX B - RAPIDMINER TEXT PLUGIN OPERATOR

REFERENCE

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Inner operators: The inner operators must be able to handle [TokenSequence]
and must deliver [TokenSequence].

Short description: Generates a word vector from TextObject.

Description:

8.1.24 ToLowerCaseConverter

Group: IO.Text.Stemmer

Required input:

� TokenSequence

Generated output:

� TokenSequence

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Converts the characters in all terms to lower case.

Description:

8.1.25 TokenLengthFilter

Group: IO.Text.Filter

Required input:

� TokenSequence

Generated output:

� TokenSequence

Parameters:

July 19, 2009

8.1. TEXT 59

� min_chars: The minimal number of characters that a token must contain
to be considered. (integer; 0-+∞; default: 4)

� max_chars: The maximal number of characters that a token must contain
to be considered. (integer; 0-+∞; default: +∞)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Filters terms based on a minimal number of characters
they must contain.

Description:

8.1.26 TokenReplace

Group: IO.Text.Transformer

Required input:

� TokenSequence

Generated output:

� TokenSequence

Parameters:

� replace_dictionary: De�nes the replacements. (list)

Values:

� applycount: The number of times the operator was applied.

� looptime: The time elapsed since the current loop started.

� time: The time elapsed since this operator started.

Short description: Replaces all occurences of all speci�ed regular expression
within each token by its speci�ed replacement.

Description:

The WVTool Tutorial

