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Abstract

The number of recorded feature has grown exponentially over the last
years. In the bioinformatics domain datasets with hundreds of thousands
of features are no more unusual. Extracting knowledge from such huge
heaps of data demands for new methods. Traditional methods that are
applicable for low dimensional data like wrapper feature selection can no
longer handle the growing number of features. We present an extension
to RapidMiner containing feature selection and classification algorithms
suited for the high-dimensional setting overcoming the limitations of
traditional feature selection approaches.

1 Introduction

High-dimensional data are a challenge for data miners for several reasons.

e The more complex models are, the harder they are to comprehend and
communicate. It is much easier to tell a biologist that from some tens of
thousands of genes these 10 are important to the disease he is tackling
than to explain the influence of the 10.000th feature in a Support Vector
Machine [5].

e The number of examples n to comprehensively describe a p-dimensional
space grows exponentially in p [2].

e With high dimensionality often comes high variance, challenging the sta-
bility and such meaning of feature selections[13, 8].

e More dimensions mean more data. More data means longer runtime.
Instead of sampling an losing information this can be tackled from the



feature side by neglecting those feature which contain no information
concerning the learning task at hand.

For large p conventional wrapper selection methods like Forward- or Backward-
Selection [9] or evolutionary methods [12] are computationally infeasible. Fur-
thermore, they tend to overfit to the used learning scheme [14]. This can
improve the performance of the learner used for feature subset evaluation, but
is not useful for presenting the set of ”solely relevant” features to practitioners
or clients. In this paper we present an extension to RapidMiner, which provides
feature selection algorithms suitable for the high-dimensional and high-volume
(large p, large n) setting.

This paper is built up as follows. Section 4 describes feature selection
with linear models. Some very fast filter approaches are shown in Sections
2 and 3. Then Section 5 shows how one can get more stable selections in
RapidMiner. We show some experiments illustrating the benefits of feature
selection in Section 7 and conclude in Section 8.

Notation Operator names are printed in bold face. Throughout the paper
we will be using the term feature as synonym to attribute and variable. Let
X denote the set of all features and « € X a single feature. The index ¢ allows
instance-wise indexation such that x; means the values of feature z of the ith
example. In contrast index j stands for feature-wise indexation such that z; is
the jth feature. Last, x; denotes the p-dimensional vector of the ith example.

2 Filter Methods

The fastest way for feature selection is most probably ranking the features
with some statistical test and selecting the k features with the highest score or
those with a score greater than some threshold ¢ [5, 14] . Such univariate filters
do not take into account feature interaction, but they allow a first inspection
of the data and sometimes provide reasonable results. And, most of all, they
are fast. Univariate filter methods usually work in ©(n - p).

2.1 Significance Analysis for Microarrays

For the very high-dimensional problem of analyzing microarray-data [18] sug-
gests scoring the genes with the SAM statistic or relative difference d(z) which
is defined as
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iy /_ denotes the indices and T, denotes the mean of all examples belonging
to the positive/negative class and sg is a small correctional parameter control-
ling the influenece of variance. This function is implemented in the Weight
by SAM-operator.

2.2 Welch test

Another statistical test for measuring significant differences between the mean
of two classes, the Welch-test, is defined as
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The Weight by Welch-test-operator! computes for each feature a p-value
for the two-sided, two-sample Welch-test. It does not assume subpopulation
variances are equal. Degrees of freedom are estimated from the data.

2.3 Other filters

Whether a scoring function is applicable to a feature depends on whether the
feature and label are numerical or nominal. For a continuous feature X and a
nominal label Y with C classes the F-test score is defined as
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with per-class-variance o2 and n. the number of examples in class ¢ € {1, ..,C}.
It reflects the ratio of the variance between classes and the average variance
inside theses classes.

A linear dependency between two numerical features can be scored by
Pearson’s linear correlation
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1The operator Weight by Welch-Test has been implemented by Miriam Biitzken.



A possible measure for the dependency between two nominal features is the
mutual information
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where the z; and y,, are the possible nominal values of x and y.

The operator Weight by Maximum Relevance scores features accord-
ing to those three above mentioned functions. It automatically chooses the
function which matches the types of features involved. One has to note for
datasets with mixed nominal and numerical features that those functions map
to different scales. So it is wise to first transform all features to the same
domain [3, 7].

3 Hybrid Multivariate Methods

A group of new algorithms has come up to bridge the gap between fast but
univariate filters on the one hand, and slow but multivariate wrappers on the
other hand. Their goal is to find a subset of features which is highly predictive
with no or a minimum of redundant information.

3.1 Minimum Redundancy Maximum Relevance

The correlation based feature selection (CFS) [7] and minimum Redundancy
Mazimum Relevance feature selection [3] perform a sequential forward search
with a correlation based or information theoretic measure in the evaluation
step. They iteratively add to a set F' the best feature according to a quality
criterion Q:

Fji1 = FjUargmax Q(f) (7)
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where @ is either the difference

1
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or the ratio between relevance and average pairwise redundancy of x given the
already selected features =’ € F:
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The Relevance(-,-) and Redundancy(-,-) functions automatically map to lin-
ear correlation (eq. 5), the F-test-score (eq. 3) or the mutual information (eq.
6) depending on the types of features involved (nominal/numerical). The op-
erator Select by MRMR / CFS implements this algorithm. Additionally,
it has the possibility to give stabilized selection results by applying a fast en-
semble technique [15]. Tt repeats the selection process e times to decrease the
results variance. Runtime is prevented from being multiplied by e by splitting
the relevance and redundancy measures into blocks and clever use of caching.

The Qyrp and Qarrq criteria can also be used with other search strate-
gies. The operator Performance (MRMR) allows to evaluate any feature
set inside a Optimize Selection-loop. But in contrast to the single criteria
MID and MIQ and those in the Performance (CFS)-operator, the Per-
formance (MRMR) also deliver relevance and redundancy as two separate
criteria allowing for multi-objective optimization of the feature subset selec-
tion. To speed up the computation, a MRMR-Cache-object can be created
via the MRMR Cache Creator directly before the optimization loop. If
two features are compared in different iterations of the loop their correlation
or mutual information has only to be computed once. This provides significant
speed-up.

4 Selection with Linear Models

For linear models with standardized features the absolute values of the entries
in the coefficient vector 3 reflect a feature’s importance. From a feature selec-
tion point of view those features with zero entries are not selected. If the linear
model does not provide such zero entries one could discard those features with
very small absolute values.

4.1 Recursive Feature Elimination

The Lo-regularized Support Vector Machine (SVM) [19], which minimizes

i=1

tends to distribute the weight equally among correlated features. Hence, set-
ting all small values to zero simultaneously could eliminate two important
correlated features which had to share their influence due to their correlation.
A technique for tackling this problem is Recursive Feature Elimination (SVM-
RFE) [6]. Instead of discarding all features with small influence 3; < t at once
or discarding all but the largest | ,Bj\, SVM-RFE works in an iterative way:

1. A linear SVM is trained on all remaining features, yielding 8
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Ist round | #1 Z14T5 T15T16T9 T10%7 T17T20T3 Ts T19T11T12T4 T2 T13T18T6
2nd round | T1 ¥5 T14T16T15T8 T19T9 T10T17T3 T11T7 T20

3rd round | z1 T14%5 T15T16%s Ti9T9 Tio

4th round | 1 5 T14T16T8 X15

5th round | x1 x14T16T5

Table 1: Changing ranks of features x; in each iteration of SVM-RFE

2. The fraction r or fixed number ¢ of features with smallest |3,| is dis-
carded.

3. If only k features are left finish, else goto 1.

This recursive feature elimination scheme can make use of any multivariate
model producing a 3, for each feature.

Table 1 shows an example run clarifying the algorithms behavior and ben-
efit. For example xg would have been discard if only |Sg| of the first SVM
run had been considered. But as it does not belong the fraction of features
removed in the first round stays in the feature set. In the first round perhaps
some features were removed which share some information with xg. As this
information is now only covered by xg it receives a higher ranking. It turns out
that xg is a rather important features and results among the top six features.

Due to its popularity in the bioinformatics community and good applicabil-
ity to the p > n-scenario we have implemented two RFE operators in Rapid-
Miner. The operator Select by Recursive Feature Elimination with
SVM is a hard wired implementation of SVM-RFE with a linear jMySVM
inside. The C' parameter is fixed for all iterations. If one wants to optimize
the C' parameter for each round inside RFE or make use of another multivari-
ate weighting, one can use the operator Recursive Feature Elimination.
It contains a subprocess which can be filled with any (chain of) operator(s)
producing an Attribute Weights object.

4.2 Least Angle Regression

The L;-regularized Least Absolute Selection and Shrinkage Operator (LASSO)
[16] yields a sparser coefficient vector 3 with many zero entries. The optimiza-
tion function of the LASSO is

ming - > (i — <1 8’ (11)
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under the condition that ,
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As there is no offset or bias 3, the input data have to be standardized to zero
mean.

In [4] the Least Angle Regression (LARS) algorithm was introduced which
provides a stepwise regression model. With some small modifications it also
delivers a LASSO solution. Starting with 8 = 0, LARS stepwise increases
those coefficients whose features have in each iteration the highest correlation
with the target until all are non-zero. The LARS - Least Angle Regres-
sion-operator can deliver such full unconstrained (¢ = 0) solutions and any
constrained solution on the iteration process. Fig. 1 shows the development of
the coefficients for the unconstrained LARS and the slightly different uncon-
strained LASSO solution. Unconstrained LARS-models can later be converted
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Figure 1: Development of the coefficients in the unconstrained (¢ = 0) LARS
and LASSO solutions on the Diabetes dataset

into constrained solutions and deliver any 3 for any choice t. The operator
LARS - Change Model Parameters can be used to either change the ¢
parameter or the maximum number of features with non-zero entries in the
coefficient vector, see Fig. 2.

5 Ensemble-Methods

When selecting a sub-set of features the main goals are to enhance the classifi-
cation performance or to keep a good performance with a smaller and clearer
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Figure 2: Constrained LASSO solution, ¢ = 1000, on the Diabetes dataset

set of features. But most often it is also necessary to provide a feature set
which is stable [13, 10, 11, 15]. If small variations in the input data result in
major changes in the selected feature sets it is hard to present such a result as
the final solution.

The stability of a feature selection method can be measured by the similar-
ity of the resulting feature subset generated by a feature selection method on
different data drawn from the same basic population. Different stability indices
are available for this similarity of sets. The Jaccard index of two feature-sets
as used by [13] is defined as
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A measure very similar to the Jaccard Index was proposed by [10] which we

will refer to as Kuncheva’s index Sgi. For two feature subsets of size k it is
defined as

2
|F. N Fy| %
Sk (Fo, Fy) = Tﬁp (14)
P

where Sk (Fy, Fp) € [—1,1]. Its advantage over the Jaccard index is that it
also regards the size p of the whole feature set and the number & of selected
features.

When one wants to analyze the stability of a feature selection scheme, one
can put it inside the Feature Selection Stability Validation. It repeats
the inner selection process on variations (bootstraps or cross-validation-like
subsets) of the Example Set and compares the resulting feature sets or -weights
by Jaccard index and Kuncheva’s index or linear correlation.



It has be shown [13, 8, 11, 15] that applying ensemble-methods to the
feature selection problem can benefit selection stability and classification per-
formance. For this reason the Ensemble Feature Selection meta-operator
can be filled with any feature selection scheme. The inner process is the repeat-
edly applied to variations of the input data, similar to the above operator. The
resulting Attribute Weights of each iteration of the inner process are then com-
bined to a final Attribute Weights-object. There are three ways for combining
Attribute Weights. The top-k method counts, how of a feature was selected
or ranked among the top k features. Then the k features with the highest
count are returned. The user can also define a threshold to the minimum
number of iterations in which a feature has to be selected. The geg_w method
works similar, but counts how often a feature received a weight > w. Last,
the accumulate_weights option simply adds up the weights over all iterations.

6 Utility

This section contains some helpful operators which do not implement any par-
ticular feature selection or model building algorithm. They serve as shorthands
for otherwise lengthy sub-processes or macros or add missing features.

Select top k features In order to derive a feature subset from an impor-
tance measure like the above mentioned SAM score or F-test score one can
define the desired size of the subset and only choose the top scored features.
For useful application of weighting schemes inside a Wrapper-Validation
the Select top k features-operator takes an Attribute Weights-object and
sets the top-ranked weights to one and all others to zero. The user can either
define a fixed size k of the subset or choose the top p percent.

Log performance To get more stable performance estimates in RapidMiner
one can repeat processes inside a Loop and Average. Sadly, this operator
allows to log only on single performance value. To overcome this drawback
the Log Performance-operator attached after a Loop and Average can
log arbitrary entries in a Performance Vector-object along with their mean,
variance, standard deviation and number of samples.

Weights 2 Ranking Naturally, every feature weighting scheme provides a
ranking of the features. This operator just sorts a features according to their
weight an replaces the weight with the position in the ordered list. See Table
2 for an example. If also negative weights can mean high influence, e.g. as
generated by an SVM, it is possible to use the absolute weights as a sorting
criterion.



Attribute ‘ Weight ‘ Rank

Outlook 0.247 2
Temperature | 0.178 3
Humidity 1.118 1
Wind 0.048 4

Table 2: The feature weights and the resulting ranks for the Golf dataset.

Rank by Selection Some feature selection operators provide the user with
a final set of selected features. Most often the features are selected in an
iterative fashion which implies a ranking. In order to extract this implicit
ranking, one can place the selection scheme inside the Rank by Selection
operator. This operator then repeatedly executes its sub-process for selecting
1..k features.

Replace Missing Values (with offset) This adds a useful feature to
RapidMiner’s own Replace Missing Values operator. The added function-
ality is that a constant offset can be added to the replenished values. This is
for example helpful in miRNA analysis. The value of each miRNA stands for
the days it took to reach a certain level of growth. If after n days the exper-
iment has to be finished, there might be probes which have not yet reached
that threshold. The number of days needed to reach the threshold is thus
unknown. When analyzing this dataset in RapidMiner simply replacing the
missing values by the maximum (n, in this case) does not pay respect to the
nature of the experiment. In this case it is useful to add an offset to distinguish
the maximum values from the unknown values.

Nearest Centroid A very fast and simple classification method is imple-
mented in the Nearest Centroid-operator. After selecting the most impor-
tant features, the centroids for each class are calculated. Each new instance
is then classified as belonging to the class of the nearest centroid. This is an
un-shrunken variant of the nearest shrunken centroid method [17]

7 Experiments

Just to visualize the benefits of feature selection Fig. 3 compares a rather com-
plicated Random Forest model trained on all features to the two very simple
learners Naive Bayes and 1-Nearest-Neighbor each combined with the MRMR
feature selection. Horizontal lines show accuracy on all features without selec-
tion.
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Figure 3: Simple learners combined with a good selection provided better
results than the more sophisticated Random Forest on the colon dataset (n =
62, p = 2000). x-axis: number of selected feature, y-axis: accuracy

To exemplarily point out the usefulness of filter- and embedded approaches
we also compared a selection by SAM-statistics, SVM-RFE and MRMR to
two wrapper approaches. First, a forward selection wrapper utilizes a ten-fold
cross-validation with a Naive Bayes learner to evaluate feature sets. We used
the RapidMiner-operator Forward Selection. Second, we used and evolu-
tionary wrapper selection with the same cross-validation scheme inside - op-
erator Optimize Selection (Evolutionary). These experiments were con-
ducted on a microRNA-expression dataset with 67 examples and 302 features.
It can be seen from Fig. 4 that the wrapper approaches were outperformed by
our operators in terms of classification accuracy most of the time. Further-
more, our presented operators needed much less runtime than the wrapper
approaches, cf. Fig. 5.

The stabilizing effect of applying ensemble methods to features selection
can be seen in Fig. 6. We measured the stability of resulting feature sets for
MRMR and a ten-fold ensemble of MRMR. That dataset used is the colon
dataset [1] with p = 2000 features and n = 62 examples.
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Figure 4: Accuracy (y-axis) of the different feature selection methods evaluated
with different learners dependent on the number of selected features (z-axis).

8 Conclusion

We presented an extension to RapidMiner which delivers implementations of
algorithms well suited for very high-dimensional data. The extension contains?
operators with new feature selection methods, meta-schemes for enhancing
existing algorithms and the Least Angle Regression algorithm which delivers
sparse models. The operators for feature selection and sparse models are useful
when practitioners need small and interpretable models. The algorithms in
our extension are faster than traditional wrapper approaches. Besides the
speedup the classification performance was also enhanced. And we increased
the stability of feature selection methods by applying ensemble methods. All
these achievements are reasonable for overcoming the curse of dimensionality.

2This paper regards version 1.0.6 of the Feature Selection Extension.
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