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Multi-objective modeling and optimization of ultrasound-assisted bleaching of olive oil were
accomplished by a hybrid artificial neural network (ANN) and genetic algorithm (GA) method using an
ultrasonic bath with a frequency of 25 kHz. The influence of process parameters including ultrasonic
power, bleaching clay dosage, process temperature and time (inputs) on final Lovibond red (Lr) and
peroxide value (PV) (outputs) was modeled by a multilayer feed-forward back propagation ANN. The
accurate 2-hidden layer model with 20 neurons in each, high R2 (up to 90%) and minimum mean square
error (MSE) obtained by ANN was introduced to GA to find the best operation conditions to achieve min-
imum Lr and PV. The optimum treatment was found with ultrasonic power of 30%, bleaching clay of 1.2%,
bleaching time of 13 min and temperature of 65 �C. Under optimal conditions, Lr and PV were 2.47 and
6.49 (meqO2/kg), respectively, that were consistent with predicted values.
Optimally ultrasonic bleached olive oil and an industrially bleached olive oil were compared. In most

cases, the results indicated no detrimental effects of ultrasound on oil structure. Thus, 40% reduction in
bleaching clay dosage, 35% reduction in process temperature and 57% reduction in time over ultrasound-
assisted bleaching which not only provided economic and environmental benefits, but also retained edi-
ble oil nutritional value in comparison to common bleaching procedure. The results of this study confirm
the applicability of ultrasound-assisted bleaching by ultrasonic bath as an economic and feasible
approach for bleaching of olive oil to reduce high bleaching costs.

� 2017 Elsevier B.V. All rights reserved.
1. Introduction membrane technology (Reddy et al., 2001), supercritical fluid
Commercial bleaching is primarily a multivariate adsorption
procedure mediated by bleaching clays either in natural or acid
activated form (Dijkstra and Segers, 2007). In practice, however,
unfavorable side reactions are also likely to occur. To improve
bleaching performance and counteract the drawbacks associated
with the conventional method, several techniques such as
(Ooi et al., 1996) and more recently, ultrasound-assisted methods
have been developed. Ultrasound-assisted bleaching, as an alterna-
tive technique, offers numerous advantages over current bleaching
procedure and it is gaining interest to be implemented in commer-
cial oil refining. It is believed that ultrasonic irradiation can
improve conventional adsorption by various mechano-chemical
routes, although ameliorated edible oil bleaching after sonication
by high intensity ultrawaves is assigned to physical effects rather
than chemical alterations (Jahouach-Rabai et al., 2008). This effect
is engaged in higher bleaching efficiencies in addition to decrease
in operation time, diminish of the bleaching clay usage and in turn
reduction in high bleaching costs. Subsided amounts of spent
oil-laden bleaching clay can be promising for the management of
environmental hazards as well (Abedi et al., 2015).

Olive oil is a popular cooking and salad oil that is widely con-
sumed as virgin oil owing to its unique nutritional value (Matos
et al., 2007). But, when the quality of extracted olive oil is low, a
refining process is necessary to remove undesirable compounds
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from oil (Morales et al., 2005). Bleaching is the critical step for the
removal of chlorophyll pigments because these pigments are not
susceptible to eliminate in deodorization unit (Ouyang et al.,
1980). A large amount of acid activated bleaching clay is required
to remove high chlorophyll content from olive oil. Supplying high
amount of bleaching clay and oil loss (in the used clay) imposes high
bleaching operation costs on oil industries. High bleaching clay
usage (2–5%) along with high bleaching temperatures (80–120 �C)
and long processing times (up to 30 min) (Zschau, 2001) permit pro-
longed catalytic activity of clay and deleterious reactions on fatty
acids such as dimerization, polymerization, hydrolysis, isomeriza-
tion (Chapman et al., 1994; Vasvazova et al., 1998) and finally dras-
tic loss in quality of bleached olive oil. Degradation of natural
antioxidants, namely tocopherols and sterols is plausible even at
temperatures below 100 �C (Verleyen et al., 2002). It has been
deduced that high intensity ultrasonic waves remarkably improve
bleaching performance without considerable change in chemical
compositionof olive oil. Low linoleic acid content and relatively high
stability of olive oil against oxidation proposed ultrasound-assisted
bleaching as a suitable alternative technique for traditional bleach-
ing (Jahouach-Rabai et al., 2008). However, there is the concern that
ultrasonic cavitation and relating consequences may adversely
influence edible oils. Lipid oxidation induced by ultrasound is
reflected in diminishing organoleptic properties, slight decrease in
essential oils while increasing dienic hydroperoxides (Chemat
et al., 2004a). It is considered that by optimization of process param-
eters, one can achieve high bleaching efficiency with reduced
bleaching clay consumption in significantly shorter processing time
while nullifying disadvantages arising from acoustic cavitation.

Optimization of soybean oil bleaching by ultrasonic probe
demonstrated two optimal conditions regarding ultrasonic power,
bleaching clay dosage, process temperature and time (Abedi et al.,
2015). Classic optimization methods usually deal with a lot of com-
plex calculations and their performance would be restricted by dis-
continuities in the objective function (Lundstedt et al., 1998).
Response surface methodology has shown advantage of modeling
and optimization with a limited experimental work. However,
the necessity of preliminary experimental design and fitting exper-
imental data on a quadratic function limits its application for all
modeling and optimization problems (Bas� and Boyacı, 2007). High
accuracy model predictions with satisfactory generalization char-
acteristics have been achieved by artificial neural network (ANN).
It fundamentally imitates the biological neural network in which
a model is developed based on heuristic training (ZareNezhad
and Aminian, 2011). ANN operation is a mathematical simulation
of human contingency learning mechanism, i.e. by receiving preset
dataset; it behaves as a black box perceiving a particular relation-
ship between input and output data, known as pattern recognition.
Thereafter, so-derived model can be used to predict further out-
puts from additional input values (Dasari et al., 2009). The superi-
ority of ANN has been adopted from its peculiar features. The most
notable capability of ANN is that it does not urge a preliminary pat-
tern to be fitted with introduced inputs. In other words, it is
trained based on non-designed or statistically-designed data, so
there is no need for operator proficiency (Almeida, 2002). Flexibil-
ity is another advantage of ANN which qualifies it for the approx-
imation of almost all linear and non-linear functions in industrial-
scale processing (Zilouchian and Jafar, 2001). Genetic algorithm
(GA) is a meta-heuristic methodology inspired by Darwinian The-
ory of natural evolutionary based on selection and ‘‘survival of
the fittest” principles. Generally speaking, it stochastically searches
through solution space to achieve the optimum. Integrating GA, as
an optimization algorithm, into ANN makes it possible to fulfill a
modeling and optimization outline (Nandi et al., 2002).

Hence, the objective of this study is to present a general practi-
cal model and optimization for ultrasound-assisted bleaching of
olive oil using ANN-GA hybrid which to the best of our knowledge,
no study has reported it to date. Additionally, we used ultrasonic
bath for the current scenario since this device is economical and
facile proposing a practical operation condition under modest
ultrasonic exposure (Thompson and Doraiswamy, 1999) that have
not yet been tested in prior research for this purpose. After finding
optimum treatment according to color and oxidative parameters,
virgin olive oil (VOO), optimally ultrasonic bleached olive oil
(UBOO) and an industrially bleached olive oil (IBOO) were charac-
terized and compared regarding their physicochemical properties.
2. Materials and methods

2.1. Materials

Virgin olive oil was obtained from a local refinery (Nab e Tava-
koli) in Rudbar, Iran. All chemicals used in this study were of ana-
lytical grade and purchased from Merck (Darmstadt, Germany).
2.2. Ultrasound equipment

An ultrasonic cleaning bath (Pacisa SA, Spain) with a frequency
of 25 kHz and working power of 400 W was used for ultrasound-
assisted bleaching in this study. The ultrasonic processor is a rect-
angular chamber of size 30 cm � 15 cm � 15 cm equipped with
temperature control unit.

The area with maximum cavitation intensity was qualitatively
measured by simple aluminum foil test. Aluminum foil was cut
into 6 cm � 4 cm pieces and submerged into different zones of
the water bath. After 2 min insonation, the right zone was chosen
based on maximum perforations tracked on the foil (Muqbila et al.,
2005). Pretest data were collected in order to optimize water vol-
ume, and tube positions in ultrasonic bath, and ideal conditions
were used for ultrasonic treatments.
2.3. Ultrasound-assisted bleaching

Acid activated bleaching clay (bentonite) was added to final
concentration to 50 ml of virgin olive oil, and the mixture was
thoroughly stirred. Experimental ultrasound-assisted bleaching
was performed at a given power setting as the percentage of full
power within a predetermined bleaching duration at desired tem-
perature. After cooling, the slurry was centrifuged, and supernatant
oil was filtered through Whatman No. 42 (Whatman International
Co., Ltd., Kent, UK) filter paper. As soon as a clear filtrate was
obtained, color (see 1.6.2 Color measurement) and peroxide value
(PV) (see 1.6.1 Quality indices) were measured. The industrial sam-
ple was prepared without sonication using 2% activated bentonite
at temperatures between 95 and 100 �C for 30 min under nitrogen
gas. All experiments were carried out in triplicate.
2.4. Data set

Before optimization, some screening tests were carried out to
decide appropriate levels for each variable. In this way, influence
of different bleaching treatments with varying levels of ultrasonic
power setting (0, 50, 100%), bleaching clay dosage (0, 0.5, 1 and
1.5%), process temperature (35, 45, 55 and 65 �C) and time (15,
20, 25, 30 min) were evaluated on Lovibond red (Lr) since it is
the most common preliminary quality criterion (Mag, 1990).

Finally, in this study a full factorial design of experiments con-
ducted using the various combinations of the following factor’s
levels: 0, 50, 100% for power setting; 0.5, 1, 1.5% for bleaching clay
dosage; and 45, 55, 65 �C for process temperature and 15, 20, 25,



424 S. Asgari et al. / Computers and Electronics in Agriculture 140 (2017) 422–432
30 min for time. A dataset of 108 experimental runs was employed
to construct predictive model by ANN.

2.5. Artificial neural network-genetic algorithm (ANN-GA)

ANN architecture consists of highly interconnected computa-
tional elements which find an empirical relationship between the
inputs and outputs of a given system. Artificial neurons (or neu-
rons) represent as building blocks of this structure each of which
is capable to do a simple task via a transfer function. Each neuron
is interlinked with several other neurons by weighted connecting
lines (the same as biological synapses) resulting in complex
sophisticated network layers, known as neural network (Dasari
et al., 2009; Lang, 2001). There are various architectures from
single- to multilayer networks. Multilayer perceptron (MLP) is
the most common feed-forward neural network with three inputs,
hidden and output layers in which each neuron in a particular layer
is adjoined all neurons in the adjacent one and calculation flows
from input toward output layer. While transferring, each intro-
duced parameter is multiplied and summed with corresponding
numerical weights and biases and passes through neurons in hid-
den and output layer where input parameter is processed by trans-
fer functions and gives a specific response (Desai et al., 2008).

In this study, a total of 108 experimental data was used to
model Lr and PV changes during ultrasound-assisted bleaching of
olive oil. Initial dataset was randomly partitioned in three subsets,
i.e. 60% of training data, 20% of validation and the last partition was
undertaken to test final network performance. Neural Network
ToolboxTM in MATLAB� version 7.14 (Release 2012a) was adopted
for establishing a forecasting model and optimization of
ultrasound-assisted bleaching of olive oil.

Schematic flow diagram of the methodology used in this study
is illustrated in Fig. 1. In the first step, two independent models
were trained. Input layer in either of the two models consisted of
four nodes representing as ultrasonic power, bleaching clay
dosage, process temperature and time. An output layer with one
neuron served as either Lr or PV.

We used multilayer perceptron (MLP) here because it is fast,
reliable and the most common feed-forward neural network while
the training algorithmwas Levenberg-Marquardt back propagation
(LMBP) technique (Tsoukalas and Uhrig, 1997). This system can
approximate complex biochemical multivariate functions using
information from a relatively large scalar collection. In the next
phase, by the combination of weights obtained in the two individ-
ual models, an independent ANN model was developed that eluci-
dated high predictive capacity for each response variable. Hidden
neurons were equipped with non-linear transfer function, tan-
sigmoid, while output layer had (linear) purelin-neurons.

The well-organized MLP-based model was selected by varying
the number of hidden layers, and the necessary number of neurons
was determined by changing neuron number in the range of 4–30
Fig. 1. Schematic flow diagram of modeling
within the same topology. Finally, the feed-forward neural net-
work with two hidden layers and 20 neurons in each layer has
been selected as the desired model based on minimum mean
square error (MSE) criterion. It has been argued that more complex
neural network models with more hills and valleys call for more
hidden neurons so that each unit is involved in each hill and valley.
Hence, two hidden layers enables MLP to precisely approximate
targets with fewer weighted connections than one-hidden layer
architecture (Chester, 1990).

In the third step, the model developed by ANN was imple-
mented in an optimization procedure using MATLAB GA tool func-
tion (gatool) and multi-objective optimizer, gamultiobj solver, in
search for an optimum point that led to the desired Lr and PV.
GA stochastically searches through solutions space to achieve the
optimum. GA-based optimization starts with definition of a proper
fitness function and what occurs in the following can be summa-
rized in three steps; (1) randomly initial generation genesis, (2)
reproduction of new populations and (3) the best fitness acquisition
(Beigzadeh et al., 2013).

In the first phase, algorithm randomly produces an initial gen-
eration to begin the procedure. Regeneration, in the second step,
is carried out by fitness evaluation, selecting parents (selection
operator) and creating new offsprings either directly by transfer-
ring elite individuals or indirectly via recombination or random
alterations (crossover and mutation operators) on parent chromo-
somes. Finally, algorithm ceases by a termination criterion and con-
verges to the best fitness, namely optimal condition (Beigzadeh
et al., 2013).

According to International Olive Oil Council (IOOC) refined
bleached deodorized olive oil should be light yellow colored and
there is not a global quantitative scale for each color feature. Here,
we strictly chose the lower limit for red unit acceptable for almost
all (fully) refined oils (2.5) recommended by American trading
rules (Rossell, 1991). For PV, a minimum accessible value is favor-
able after bleaching process.

Predicted values of Lr and PV were normalized prior to employ-
ing in objective function. Multi-objective optimization was carried
out using the classical weighted sum approach in which a specific
weight is associated with each objective and transforms fitness
function into a single scalar objective problem. Fitness function
was defined so as to find the best conditions to approach minimum
possible Lr (close to a value of 2.5) and concentration of PV as
follows:

fitness ¼ w1yLr þw2yPV

w1 þw2 ¼ 1;w1;w2 > 0
ð1Þ

where w1 and w2 are attributed weights which were normalized in
further calculations, yLr and yPV are normalized predicted values of
Lr and PV, respectively. The weight values of 1.5 and 1 were used
for Lr and PV, respectively, in all experiments.
and optimization by hybrid ANN-GA.



Table 1
Color indices from preliminary tests to set final levels for each process parameter.

Treatment Colora

Yellow Red Blue

P50C0T35t15b 70 4.4 2.2
P100C0T35t15 70 4.4 2.2
P50C0T45t20 70 4.4 2.2
P100C0T35t20 70 4.4 2.2
P50C1.5T35t15 45.1 3.8 –
P100C1.5T35t15 32.9 3 –

a Measured by Lovibond tintometer.
b P = power setting (%), C = bleaching clay dosage (%), T = temperature (�C) and

t = time (min), e.g., P50C0T35t15 refers to an ultrasonic treatment using a power
setting of 50%, without adding bleaching clay, under 35 �C for 15 min.
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2.6. Analytical procedures

2.6.1. Quality indices
Physicochemical properties of olive oil samples were deter-

mined according to AOCS Official Methods consisting of free fatty
acids (FFA, Method Ca 5a-40), PV (Method Cd 8-53) (AOCS,
1996), K232 and K270 extinction coefficients (Method Ch 5-91)
(AOCS, 2009). Thiobarbituric acid value (TBA) and iodine value
(IV) were measured as described by Ali Rehab and El Anany (Ali
Rehab and El Anany, 2012) and Hanus method (Zarringhalami
et al., 2011), respectively.

2.6.2. Color measurement
Red, yellow and blue units of olive oil samples (bleached and

unbleached) were measured manually in a Lovibond Tintometer
(model E) using a 51/4 in. cell according to AOCS Official Method
Cc 13e-92 (AOCS, 1996). In order to avoid biased color assessment,
Lovibond color units were compared with color coordinates L⁄

(lightness), a⁄ (redness/greenness) and b⁄ (yellowness/blueness)
measured by HunterLab colorimeter (ColorFlex EZ 45/0, Hunter
Associates Laboratory, Inc., Reston, VA, USA). The instrument was
standardized by reference black and white tiles.

2.6.3. Oil composition
Total chlorophyll concentration was determined by measuring

absorbance at 630, 670 and 710 nm using a spectrophotometer
Carry 60 UV–Vis as defined by Pokorny et al. (1995). The total b-
carotene content was also determined spectrophotometrically at
455 nm according to British Standard Methods of Analysis (BS,
1993).

The fatty acid composition was determined as fatty acid methyl
esters via trans-esterification with cold methanolic solution of
potassium hydroxide applying method described in our previous
work (Abedi et al., 2015). Sterols were evaluated following the
International Olive Council method COI/T.20/Doc. No 30/Rev. 1
(IOOC, 2011) by Younglin (Acme 6000) series chromatograph
(South Korea) equipped with a BPRX-70 capillary column
(60 m � 0.25 mm, i.d. � 0.25 mm, film thickness) and a FID detector.

Tocopherols were evaluated using standard method provided
by AOCS Ce 8-89 by high-performance chromatography (HPLC,
Younglin Acme 9000, South Korea) (AOCS, 1989). Olive oil samples
were diluted in hexane and filtered by 0.45 mm nylon syringe fil-
ter. 20 ml of the so-prepared samples were injected into silica col-
umn YMC-Pack SIL (250 mm � 4.6 mm, i.d. � 5 mm, particle size)
for separation. The mobile phase was a mixture of acetonitrile/
methanol/water (5:47.5:47.5 v/v) at a flow rate of 1 ml/min and
HPLC separation was achieved by isocratic elution. The column
effluent was then screened by a fluorescent detector set at the exci-
tation and emission wavelengths of 290 nm and 330 nm, respec-
tively. Quantification was done according to external standard
calibration curves and tocopherol concentration was expressed as
milligrams per kilogram of oil.

Elemental analysis regarding the measurement of As, Pb, P, Fe
and Cu contents in olive oil was performed by inductive coupled
plasma-optical emission spectroscopy (ICP-OES) as prescribed in
AOCS Ca 17-01 (AOCS, 2000).

2.7. Bleaching efficiency

Bleaching efficiency was assessed by following equation at two
wavelengths of 410 (BE410) and 424 (BE424) nm indicating a chloro-
phyllic (as chlorophyll a) and a carotenoid (as lutein) pigment,
respectively:

BE ð%Þ ¼ Av � Ab

Av
� 100 ð2Þ
where Av and Ab are, respectively the absorbance of virgin and
bleached olive oil at 410 or 424 nm.

2.8. Statistical analysis

All experimental results are expressed as mean values of tripli-
cate determinations ± standard deviation. Data obtained in the sec-
ond part of the study was analyzed using SAS software (version
9.1) and differences among average values examined by Duncan’s
test at p � 0.05 significance level.
3. Results and discussion

Preliminary tests showed that temperature of 35 �C and 0% of
bleaching clay was not efficient enough to reduce color indices
(Table 1) so their combinatory treatments were withdrawn from
the rest of this study.

3.1. Modeling and optimization by hybrid ANN-GA

Table 2 shows goodness of fit (GOF) indices of the fitted ANN
models for Lr and PV. Comparable small magnitude of MSE and
high values of determination coefficient (R2) obtained for training,
validation and testing outputs confirm the very good approxima-
tion and generalization characteristics of model obtained by ANN.

In order to evaluate ANN performance, R2 was further demon-
strated after plotting all experimental data against corresponding
predicted values (Fig. 2). A good correlation observed between
experimental data and predicted results indicate the capability of
this MLP-based model for high accuracy of predicting each
individual.

Sensitivity analysis helps to examine the influence of each
parameter on final responses. The gradient of ANN models on the
four specified parameters around the optimum point is a good
proxy for estimating the effect of small perturbation around the
optimum parameters in bleaching process setup on the Lr and
PV. In this way, gradient of ANN models for each of Lr and PV have
computed numerically around the optimum parameters. Regard-
ing Lr, these values were �0.0012, �4.2380, �0.4049 and 0.0001
for ultrasonic power, bleaching clay dosage, bleaching time and
bleaching temperature, respectively. The values of 0.0001 for ultra-
sonic power, 0.1285 for bleaching clay dosage, 0.0001 for bleaching
time and �0.0004 for bleaching temperature were obtained with
respect to PV. The closeness of almost all gradients to zero for both
Lr and PV identifies the little sensitivity of the final results against
small perturbation around the optimum points. According to the
values, small deviation, for example of about h, around the opti-
mum value of clay dosage will result in an approximate change
of �4.2380⁄h and 0.1285⁄h change in Lr and PV, respectively. For
example, if the factor level of clay in bleaching process set to



Table 2
GOF indices of ANN models for training, validation, test and all dataset.

R2 MSE

Training Validation Test All Training Validation Test All

Lr 0.8357 0.9380 0.9295 0.9228 0.0311 0.178 0.0083 0.0248
PV 0.9036 0.7226 0.8724 0.9079 2.3481 1.1537 1.1916 2.3813

A B 

R2 = 0.9228   R2 = 0.9079 

Fig. 2. Scatter plot of experimental data versus predicted values of Lr (A) and PV (B) from ANN.
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1.31 rather than 1.21 the final value of Lr and PV will be 2.45 and
6.72 (meqO2/kg) instead of 2.44 and 7.15 (meqO2/kg), respectively.
However, relatively higher value obtained for bleaching clay
regarding Lr shows higher sensitivity of Lr to the variations of
bleaching clay dosage and the negative sign demonstrates the
reverse relationship between the changes of variant and the
response. This finding is also in agreement with the results
acquired by regression models in our previous study (Abedi
et al., 2015).

Input space of model developed by ANN was optimized by GA
to obtain the best treatment conditions based on acceptable val-
ues for Lr and PV. Weighted sum approach makes it possible to
convert GA-based multiple objective function optimization prob-
lem into a single optimization one when a specified weight vector
is accompanied by the objective function. Optimization with this
approach also takes advantage of more flexibility and ease of
exploitation (Zitzler et al., 2000). The procedure repeated several
times by different GA-specific parameters. The algorithm conver-
gence was achieved after 155 iterations. The values of GA-specific
parameters in optimal point were: population size of 50, cross-
over probability of 0.8 and mutation probability of 0.2. Based
on the results of this study, the power setting of 30%, 1.21% of
bleaching clay, bleaching time of 13 min and a temperature of
65 �C were chosen as optimum ultrasound-assisted bleaching
condition which led to predicted values of 2.44 for Lr and 7.15
(meqO2/kg) for PV.

These responses were evaluated under actual experimental
condition. Ultrasound-assisted bleaching of olive oil was carried
out under optimal conditions meanwhile nitrogen gas was main-
tained above oil surface during bleaching to avoid oxygen-
induced deterioration. Under predicted optimal conditions the val-
ues of 2.47 and 6.49 (meqO2/kg) were achieved for Lr and PV,
respectively (Table 3) that shows a good agreement with predicted
values.

3.2. Effect of ultrasound on bleaching parameters

When an ultrasonic wave propagates across complex bleaching
medium visualizes as sequent compression and rarefaction phases.
The pressure fluctuations make the oil be torn apart where small
voids breed and regenerate to a significant number of tiny bubbles
of oscillating size. If pressure gradient is sufficient enough, bubbles
reach to a threshold after which their violent compression invokes
a phenomenon known as transient cavitation (Bernstein et al.,
1996). Drastic mixing from microstreaming, shear forces and Eddy
currents not only add the more possibility of clay-adsorbent colli-
sions, but also can speed up the transition of intermediates from
clay-oil interface leading to mass transfer enhancement. Shock
waves in the vicinity of bleaching clay abrade surface layer and
break clay particles supplying more adsorptive platform. Heighten-
ing catalytic activity is mostly due to expanding in effective reac-
tion surface by ultrasonic waves (Suslick, 1997). But sonication
can also modify mineral surfaces to help electrostatic isolation
(Farmer et al., 2000). Furthermore, accelerated heat transfer can
intensify heterogeneous catalysis.

Overall, according to our findings, economic justification for
optimized ultrasound-assisted bleaching was 40% reduction in
bleaching clay dosage, 35% reduction in process temperature and
57% reduction in time when compared to the common commercial
process. Under the optimal condition high bleaching efficiencies up
to 88.41% for BE410 and 83.72% for BE424 were obtained. So keeping
cavitational activities in mind, effect of individual process param-
eters can be described as follows.

The magnitude of an ultrasonic treatment depends on ultra-
sonic power (Hua et al., 1995). High powers aid in more severe
alterations. During bleaching process, rising ultrasonic power up
to 30% yielded in increment of surface erosion and bleaching effi-
ciencies. It is worth noting that powers more than 30% were not
able to considerably alter bleaching efficiencies. Higher powers
might impair clay-adsorbate bonds leading to desorption of pig-
ments from adsorptive surface.

Based on van’t Hoff equilibrium equation, adsorption process is
an endothermic reaction (Mason, 1998). Consequently, the higher
the adsorptive bleaching temperature, the more efficient is the
adsorptive bleaching process. Simultaneous application of heat
and sonication (called as thermo-sonication) in adsorptive bleach-
ing gives rise to the mobility (kinetics) of adsorbates (Hamdaoui,
2009), lowers cavitation threshold and increases cavitation inci-
dence (Alliger, 1975) and therefore, reduces total adsorbates more
efficiently than heat bleaching or sonication alone. In addition,



Table 3
Some physicochemical analysis of VOO, UBOO and IBOO.

Parameter VOO UBOO IBOO Limitation determined by IOOC

IV (gI2/100 g) 82.06 ± 0.24A 81.90 ± 0.13B 81.98 ± 0.11B 75–94
PV (meqO2/kg) 11.69 ± 0.28A 6.49 ± 0.50B 3.19 ± 0.20C (VOO) � 20

(ROO) � 5
TBA (meq/kg) 0.05 ± 0.01A 0.06 ± 0.00A 0.04 ± 0.01A –
FFA (% oleic acid) 2.55 ± 0.30A 1.90 ± 0.09B 1.72 ± 0.03B (VOO) � 2.0

(ROO) � 0.3
K232 3.36 ± 0.10A 3.17 ± 0.01A 2.43 ± 0.17B (VOO) � 2.60
K270 0.06 ± 0.05C 0.89 ± 0.06B 1.17 ± 0.03A (VOO) � 0.25

(ROO) � 1.10
Lovibond color Light yellow
Red 4.37 ± 0.06A 2.47 ± 0.05B 2.5 ± 0.00B –
Yellow 70.00 ± 0.06A 29.80 ± 0.25B 27.77 ± 0.17C –
Blue 2.20 ± 0.00 – – –
Hunterlab coordinates
L* 57.80 ± 0.19C 62.77 ± 0.33B 64.74 ± 0.10A –
a* �1.88 ± 0.05A �3.75 ± 0.05C �3.18 ± 0.03B –
b* 55.94 ± 0.15A 17.40 ± 0.11B 11.15 ± 0.17C –
Chlorophyll (ppm) 12.83 ± 0.13A 1.74 ± 0.01B 1.47 ± 0.21B –
Carotenoids (ppm) 11.89 ± 0.12A 1.43 ± 0.10B 0.68 ± 0.51C –

VOO (virgin olive oil), UBOO (optimally ultrasonic bleached olive oil) and IBOO (an industrially bleached olive oil).

Table 4
Fatty acid composition (%) of VOO, UBOO and IBOO.

Fatty acid VOO UBOO IBOO Limitation determined by IOOC

C14:0 0.05 ± 0.02A ND 0.01 ± 0.01A �0.05
C16:0 16.85 ± 0.18A 16.99 ± 0.24A 16.55 ± 0.03A 7.5–20
C16:1 0.52 ± 0.43A 0.89 ± 0.02A 0.48 ± 0.37A 0.3–3.5
C17:0 0.06 ± 0.06A ND 0.06 ± 0.06A �0.3
C17:1 0.07 ± 0.07A 0.04 ± 0.04A 0.08 ± 0.08A �0.3
C18:0 3.67 ± 0.02B 3.95 ± 0.08A 3.74 ± 0.21AB 0.5–5.0
C18:1 c 66.34 ± 1.36A 65.66 ± 1.00A 66.27 ± 0.57A 55.0–83.0
C18:2 cc 11.15 ± 0.02A 11.09 ± 0.01A 11.12 ± 0.12A 3.5–21.0
C18:3 ccc 0.61 ± 0.03A 0.66 ± 0.04A 0.64 ± 0.04A �1
C20:0 0.40 ± 0.11A 0.32 ± 0.13A 0.47 ± 0.02A �0.6
C20:1 c 0.23 ± 1.08A 0.17 ± 0.01A 0.19 ± 0.06A �0.4
SFA 20.00 ± 0.04B 21.49 ± 1.03A 21.24 ± 0.18A –
UFA 80.00 ± 0.04A 78.51 ± 1.03A 78.76 ± 0.18A –
MUFA 68.25 ± 0.08A 66.76 ± 1.08B 67.01 ± 0.34AB –
PUFA 11.75 ± 0.05A 11.76 ± 0.05A 11.75 ± 0.05A –

VOO (virgin olive oil), UBOO (optimally ultrasonic bleached olive oil) and IBOO (an industrially bleached olive oil).

S. Asgari et al. / Computers and Electronics in Agriculture 140 (2017) 422–432 427
oxidative degradation of carotenoids under the effect of ultrasonic
waves causes more reduction in color intensity (Su et al., 2013). As
observed in our experiments, temperatures higher than 35 �C show
a synergism with ultrasonic effects. However, it is supposed that
temperatures more than 65 �C may adversely affect oil chemical
structure and properties.

Adsorption takes place very fast during the first minutes. An
optimal adsorption is acquired at the equilibrium time that is
expected to be in the range of 15–30 min of process time
(Wendt, 1981). While shorter equilibrium time was found in
13 min by ultrasound-assisted bleaching in present work at which
maximum bleaching efficiency was attained. Interestingly, this
time impedes detrimental consequences of cavitation that has
been claimed to occur after 20 min of sonication (Jahouach-Rabai
et al., 2008).

Apparently, more bleaching clay is substantially influential in
efficient adsorption and increase of bleaching efficiency. Despite
this, using higher dosage of bleaching clay and disposal of this
amount of solid wastes imposes high expenses on the oil industry.
Hence, optimization of ultrasound-assisted bleaching regarding
bleaching clay was the main aim of the current research. This pro-
cedure could successfully cut essential activated clay to approxi-
mately half of that required in traditional operation.
3.3. Characterization of bleached oil

For the sake of support our concept on practical scale-up of
ultrasound side assistance in bleaching, ultrasonic bleached oil
was compared with crude oil and its industrial counterpart to elab-
orate the aftereffects of ultrasonic bleaching on final oil structure.

Some physicochemical characteristics of VOO, UBOO and IBOO
are listed in Table 3.

The results from Duncan’s test showed a significant difference
between crude and bleached oils in most cases. An insignificant
difference between IVs of bleached oils could be observed. This
reduction in oil unsaturation was well affirmed by the decrease
of monounsaturated fatty acids (MUFA) (Table 4). Similarly, soy-
bean oil did not show any significant reductions in IV over ultra-
sonic bleaching which well matched its almost unchanged fatty
acid composition after both treatments (Abedi et al., 2015). Higher
peroxide concentration in sonicated oil might be due to lower pro-
cessing time and mild catalytic reaction insufficient for complete
separation and degradation of hydroperoxides as evidenced by
TBA. The final content of hydroperoxides would be removed to
standard limits under further deodorization. This means that ultra-
sound exploitation could approach to final bleaching targets under
a milder operating condition. It has been argued that application of
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ultrasonic waves during bleaching times shorter than 20 min has a
positive impact on the reduction of oxidative products, however,
sonication more than this point causes further increase in the con-
centration of first and secondary oxidative products (Abedi et al.,
2015; Jahouach-Rabai et al., 2008).

It has been demonstrated that FFA had an insignificant mod-
ification after ultrasound treatment with or without bleaching
clay (Jahouach-Rabai et al., 2008). Contrarily, our results showed
a significant decrease in this index during bleaching comparable
to traditional method (Table 3). Despite this improvement
Fig. 3. GC chromatogram of sterols in
regarding FFA adsorption, this index exceeded standard limita-
tion. Similar to PV, deodorization might reduce the content of
FFA and is considered to be helpful in relieving this noncompli-
ance (Table 3).

K232 and K270 are other oxidative indexes representing conju-
gated dienes and trienes, respectively. K232 values and PVs follow
the same trend upon bleaching but not exactly overlap (Table 3).
Although there was no significant difference after ultrasound treat-
ment, more decrease observed in K232 after traditional bleaching
was similar to the result obtained for PV. Dissociation of hydroper-
VOO (a), UBOO (b) and IBOO (c).



Table 5
Sterol composition of VOO, UBOO and IBOO.

Sterol VOO UBOO IBOO Limitation determined by IOOC

Cholesterol 0.23 ± 0.11B 0.58 ± 0.08A 0.57 ± 0.12A �0.5%
Campesterol 3.18 ± 0.02B 3.10 ± 0.03B 3.39 ± 0.07A �4.0%
Stigmasterol 1.16 ± 0.07A 1.27 ± 0.11A 1.21 ± 0.01A <% campesterol
Delta-7-stigmasterol 0.63 ± 0.19A 0.53 ± 0.07A 0.58 ± 0.06A �0.5%
Apparent beta-sitosterol: �93%
clerosterol+ 0.61 ± 0.14B 0.92 ± 0.10A 1.06 ± 0.01A

beta-sitosterol+ 87.11 ± 0.08A 86.71 ± 0.85A 86.31 ± 0.54A

delta-5-avenasterol+ 5.38 ± 0.22A 5.72 ± 0.15A 5.61 ± 0.18A

delta 5-24-stigmastadienol+ 0.56 ± 0.15A 0.38 ± 0.12A 0.47 ± 0.10A

delta 5-23-stigmastadienol+ 0.64 ± 0.01A 0.71 ± 0.26A 0.81 ± 0.11A

Total sterol content 1222.78 ± 24.60A 1157.13 ± 17.93B 1154.65 ± 32.66B �1000 mg kg�1

VOO (virgin olive oil), UBOO (optimally ultrasonic bleached olive oil) and IBOO (an industrially bleached olive oil).
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oxides into secondary oxidation products and changing into conju-
gated triene structures accompanied by an increase in UV absorp-
tion at 270 nm which is adsorbent-dependent in regular bleaching
process (Škevin et al., 2012) and is rather temperature-dependent
in an ultrasonic method (Chemat et al., 2004b). The results of the
current study showed smaller increase in K270 during sonication
in comparison with conventional bleaching owing to lower levels
of activated clay and temperature used. This could be as a result
of the fact that in a bath apparatus an attenuated form of ultrasonic
energy draws in the floating reaction tube and what delivered is
mainly spent for modification of mechanical aspect of adsorptive
bleaching although not that sever to increase triglyceride dissocia-
tion (increase in FFA). This is why an ultrasonic bath is well known
by its physical applications (Chemat et al., 2011). This approach is
in contrast with ultrasonic probe where ultrasonic energy is
directly flushed towards reaction medium (Mason, 1998) and
instantly affects the concerning variables so detrimental conse-
quences are more expected.

All color indices decreased dramatically after bleaching. At an
optimal point, Lovibond yellow (Ly) was significantly lower in
IBOO than that in UBOO (Table 3). A light-yellow tint got promi-
nent after optimal bleaching and blue color was totally disap-
peared which implies the reduction in chlorophyllic pigments.
Hunterlab coordinates namely, a⁄ and b⁄ showed similar trends
while ultrasonication was apparently more efficient on a⁄ reduc-
tion indicating higher effect of ultrasonic waves on redness.
Greater Ly and b⁄ decrease measured in IBOO (Table 3) can be
explained by relatively higher sensitivity of carotenoids against
high temperatures in traditional bleaching. This also contributed
to significant difference observed in L⁄ between IBOO and UBOO.
All these results were by modifications in total chlorophyll and car-
otenoid content after bleaching (Table 3).

Fatty acid profiles of two bleached olive oils were almost alike
and did not undergo meaningful alterations in comparison with
original composition (Table 4). The comparison between the fatty
acid compositions of ultrasound bleached and untreated olive
and soybean oil samples also demonstrated the same results
(Abedi et al., 2015; Jahouach-Rabai et al., 2008). The only slight
decrease in MUFA was noticed that had an insignificant difference
between two bleached samples. This would be as a result of the
conversion of fatty acids to volatile components or free fatty acids
as already discussed. It has been deduced that a more prolonged
ultrasound treatment may contribute to a slight oxidative degrada-
tion of linoleic acid (Jahouach-Rabai et al., 2008).

The same results were ascertained for sterol composition
(Fig. 3). As summarized in Table 5, bleaching did not also have a
noticeable effect on individual sterols. Total sterol loss during
two bleaching methods could be as a result of adsorption, isomer-
ization, dehydration, hydrolysis and esterification which reflects an
increase of sterenes and non-polar components (Bonveh et al.,
2001). Despite this negligible modification, the amount of individ-
ual and total content of sterols was in the range of quality specifi-
cations. Successful performance of ultrasound bleaching in
avoiding the degradation of sterols was also reported previously
by Jahouach-Rabai et al. (2008). The authors observed a time-
dependent decrease in total sterols of olive oil during ultrasound
bleaching with the least reduction after 13 min treatment with
ultrasound at 30 �C.

Since refined olive oil is known as suitable frying oil, the addi-
tion of a-tocopherol is allowed to retain its oxidative stability.
Nonetheless, their conservation during processing is of high nutri-
tional importance. HPLC chromatograms of tocopherols in virgin
and refined oil samples are shown in Fig. 4. As seen in Table 6, total
and individual tocopherols were significantly decreased after
bleaching. Decomposition and oxidation under the influence of
ultrasonic waves were suggested as possible causes of the reduc-
tion in a-tocopherol under ultrasonic bleaching (Jahouach-Rabai
et al., 2008). But, the difference between tocopherols of bleached
samples was not significant except for b-tocopherol. Modest tem-
perature and halved amount of activated clay accompanied by
low-frequency ultrasound (lower possibility of free radical produc-
tion) in the current study could avoid detrimental ultrasonic
effects and maintain remarkable amounts of tocopherols. Hence,
from the nutritional point of view, it can be hypothesized that
ultrasonic bath is an attempt toward safe manipulation of ultra-
sonic energy.

Table 7 illustrates initial and final elements content of olive oil
samples. In order to assess impurities in virgin oil, Pb and as con-
tents were measured by ICP-OES method. According to the
reported data, both contaminants together with P had a concentra-
tion below the detectable limit of ICP in three specimens. Positively
charged metallic ions are simply adsorbed on negative sites of
bleaching clay. Cu amount was significantly reduced after bleach-
ing while ultrasound-assisted method prevailed in this case
through (adsorptive) surface modification and intensive mixing.
Although final content of Fe was in the range of recommended
standards, it had a marginal increase after both bleaching methods
even more obvious in UBOO which was also surprisingly moni-
tored after ultrasound bleaching of olive oil using ultrasound probe
(Jahouach-Rabai et al., 2008). These results contrast with those
observed in our work on soybean oil where ultrasonic bleaching
performed efficiently in reducing all metals (Abedi et al., 2015).
Putting these results together, the increase of iron after
ultrasound-assisted bleaching of olive oil seems more like an
intrinsic change in some iron-chelating constituents of crude olive
oil such as polyphenols over ultrasonic exposure. It can also be
assumed that high amounts of polyphenols in olive oil may con-
tribute in leaching of Fe ions from bleaching clay (Najjar et al.,
2007). Accurate compositional assessment may further serve to
explain possible reasons for this contradiction.



Fig. 4. HPLC chromatogram of tocopherols in VOO (a), UBOO (b) and IBOO (c).

Table 6
Tocopherol composition (ppm) of VOO, UBOO and IBOO.

Tocopherol VOO UBOO IBOO Limitation determined by IOOC

a 272.75 ± 7.00A 164.86 ± 5.07B 174.09 ± 7.81B Maximum: 200 ppm
b 3.34 ± 0.26A 1.40 ± 0.29C 2.10 ± 0.20B –
c 0.98 ± 0.08A ND ND –
Total tochopherols 277.06 ± 6.82A 166.26 ± 4.78B 176.19 ± 8.01B –

VOO (virgin olive oil), UBOO (optimally ultrasonic bleached olive oil) and IBOO (an industrially bleached olive oil).
ND = not detected.
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Table 7
Trace heavy metal contents (ppm) of VOO, UBOO and IBOO.

Trace heavy metal VOO UBOO IBOO Limitation determined by IOOC

As ND ND ND �0.1
Pb ND ND ND �0.1
P ND ND ND –
Cu 0.13 ± 0.01A 0.01 ± 0.01C 0.05 ± 0.00B �0.5
Fe 0.09 ± 0.00B 0.36 ± 0.05A 0.14 ± 0.01B �3.0

VOO (virgin olive oil), UBOO (optimally ultrasonic bleached olive oil) and IBOO (an industrially bleached olive oil).
ND = not detected.
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4. Conclusions

This study represented a straightforward, inexpensive,
environmentally friendly and technical approach for edible oil
bleaching using ultrasonic waves. The results of this work proved
that ANN could precisely simulate ultrasound-assisted bleaching
with high R2 (up to 90%) and low MSE within an ultrasonic bath.
The accurate model obtained by ANN was employed by GA so as
to find the best operational condition. According to experimental
findings, multi-objective optimization by ANN-GA hybrid could
be successfully utilized for edible oil bleaching to minimize Lr
and PV.

Physicochemical, color and compositional assessment did not
show detrimental effects of ultrasound on olive oil. Ultrasound-
assisted bleaching using ultrasonic bath with low ultrasonic power
of 30%, 40% reduction in bleaching clay dosage, 35% reduction in
process temperature and 57% reduction in time (compared with
conventional industrial bleaching) can also meet the demand for
its practical applications.
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