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Abstract. Mining discriminant temporal patterns is one problem for
the time series classification currently led by the shapelet. We expose
this issue from the perspective of a standard feature-space classifica-
tion task. This approach is enabled by the recent observation that most
enumerable subsequences from a time series are redundant and can be
discarded. In addition to its simplicity the approach has state-of-the-
art classification performances with extremely fast computations. It also
provides a flexible framework with interesting perspectives.

1 Introduction & related work

Two main approaches exist to discover localized and phase independent discrim-
inant temporal patterns from time series: the shapelets and the derivation of
features from intervals of the series [2]. We focus here on the shapelet principle.
We invite the reader to refer to the seminal article [12] for details, to summarize
the shapelet discovery relies on three steps.

Step 1 Exhaustive enumeration of the subsequences from a set of time series.
Step 2 Evaluation of the subsequences. The minimal euclidean distances (MED)

between subsequences and time series of the dataset are computed to get the
discriminatory power (usually the information gain) of each subsequence.

Step 3 The subsequences that most consistently separate the time series with
respect to their classes are conserved.

Several variations have been proposed after the original shapelet tree that learns
a tree of successive discriminant shapelets at a price of a large time complexity.
The shapelet transform [7] has become a classical instantiation of the shapelet
principle: the shapelet discovery is performed in one pass and the MED between
time series and shapelets feed a classifier. Among the other approaches we can
cite the logical shapelets to discover conjunction or disjunction of shapelets [8],
the fast shapelets [9] and the learnt shapelets [4].

The shapelet has two limitations: the time complexity and, from our point
of view, the independent evaluation of the discriminatory power of each subse-
quence. The first limitation results from the discovery complexity in O(L3N2)



with L the time series length and N the number of time series in the dataset
[12]. The second limitation lies in the Step 2 of subsequence evaluation (based
on the information gain or a similar metrics): each shapelet has to be sufficient
to discriminate a set of time series. Even if a set of characteristic subsequences is
very discriminant, the shapelet discovery would fail to find it. To reduce the time
complexity, several improvements have been proposed [12,9] but it remains large.
It has been recently observed that most subsequences extracted from a time se-
ries are redundant. A drastic random sub-sampling among the subsequences at
Step 1 instead of an exhaustive enumeration has been shown effective to reduce
the time complexity while preserving the classification performances [3,10,5].

In this work, we rely on this observation to propose a flexible representa-
tion called EAST (Enumerate And Select discriminant Temporal patterns). It
aims at improving the two aforementioned limitations (time complexity and
independent evaluation). We postulate that each subsequence extracted from
a set of time series should be considered as a feature and the exhaustive set
of subsequences forms a feature vector. The redundancy is eliminated by the
random sub-sampling of the subsequences. A relevant subset of features (i.e.
subsequences) for the classification is conserved after a feature selection stage.
The originality of the approach resides in the problem formulation that enables
the use of well-established feature selection techniques to perform a powerful
discovery of discriminant temporal patterns. We show, with instances of our
proposition, that the classification performances already reach the state-of-the-
art while being extremely fast (evaluation of a few thousands subsequences at
most). We also demonstrate its scalability: the number of subsequences to eval-
uate is independent of the number of time series in the dataset.

2 Proposition: discriminant temporal pattern discovery

We have a training set D of time series Tn with n ∈ [1, 2, . . . , N ] where Tn =
[tn(1), . . . , tn(i), . . . , tn(|Tn|)]. Tn has a length |Tn| ∈ [Lmin, . . . , L, . . . , Lmax]
with Lmin, L, Lmax ∈ N*, where Lmin is the smallest time series of D and Lmax

is the longest one. A subsequence s of length l at a starting position j in a time
series Tn is noted as sj+l

j (Tn) = [tn(j), . . . , tn(j + l − 1)]. S is the set of all the
subsequences s that it is possible to extract from D, whatever their lengths and
starting positions are.

The problem is framed in the field of time series classification: each time
series Tn has exactly one class label y(Tn) ∈ Y . In this work, our concern is the
discovery of meaningful temporal patterns to perform time series classification.
We make the assumption that there exists a strongly-discriminant set of patterns
Z = {z1, . . . , zp, . . . , zP } with p, P ∈ N∗ and |z1|, |zp|, |zP | ∈ [1;Lmax] where zp
is discriminant of one class or a subset of classes of Y . Z is strongly-discriminant
in that it contains all the possible subsequences, which taken independently or
not, are discriminant enough to solve the classification problem. The transforma-
tion of Tn using Z produces a feature vector Xn, such that a classifier f is able
to learn a mapping f(Xn)→ y(Tn). The transformation is based on a distance.



However Z is unknown. Our objective is to discover from D a set Ẑ =

{ẑ1, . . . , ẑj , . . . , ẑJ} of patterns that produces a feature vector XẐ such that the
classification performance of f(XẐ) is as close as possible of the one of f(X)
with X obtained with a transformation based on Z.

2.1 Proposition

To determine Ẑ we propose to combine a random enumeration of subsequences
from D with a feature selection stage to retain a relevant set of patterns with
respect to the classification task.

Step 1: random sub-sampling to handle subsequence redundancy The
first step of our proposition relies on a random sampling Ŝ, among all the subse-
quences S, because of the efficiency of this principle mentioned in introduction.
Each subsequence sj+l

j (Tn) is given the same probability to be picked, whatever
its time series, position and length. We demonstrate later that the number of
subsequences q = |Ŝ| to draw to obtain a given classification performance is not
related to the size of the dataset D (i.e. the number of time series).

Step 2: learning the representation by selecting a set of discriminant
subsequences Once Ŝ is drawn we need to discover the set Ẑ ⊂ Ŝ that maxi-
mizes the classification performance. We propose to formalize the problem from
the perspective of a standard feature-space classification task. The minimal eu-
clidean distance dmin between a subsequence s with |s| = l from T1 and a time
series T2 such that:

dmin(s, T2) = min([d(s, s1+l
1 (T2)), . . . , d(s, s

|T2|
|T2|−l+1(T2))])

dmin is calculated between each subsequence of Ŝ and every time series of D.
The result is a feature space X (Fig. 1) where the distances to the subsequences
of Ŝ are the attributes (columns) and the time series of D are the instances
(rows). The number of columns of X (i.e. number of attributes) may still be
large and it is very likely that it contains numerous meaningless features: no
selection has been performed yet with respect to the classification problem. In
other terms, irrelevant subsequences s ∈ Ŝ are still present in the feature space
X.

To reduce Ŝ to Ẑ and derive a feature space XẐ relevant to train a classifier
f(XẐ(Tn)) → y(Tn) we use the feature vector formalization of the problem to
exploit classical feature selection approaches. They allow to efficiently identify
relevant attributes in a feature space with respect to a classification task. Ad-
vanced feature selection techniques offer the possibility to discover both single
discriminant subsequence and sets of subsequences where each subsequence is
characteristic of a class or a subclass, while the whole set is discriminant. Nu-
merous feature selection techniques exist, the approaches used in this work are
presented in the experimentation section (we use them as black boxes).



Fig. 1: EAST principle workflow. After a drastic subsequences sub-sampling (1), the
distances between subsequences and time series (2) form a feature space of reasonable
size (3) on which advanced feature selection techniques can be applied to discover
discriminant set of subsequences (4).

The overall principle of the proposed approach to discover discriminant tem-
poral patterns is summarized Fig. 2. A classifier can be trained with XẐ . The
result of the training is both a set Ẑ of patterns and a classifier f . To perform the
classification of new instances, time series are transformed into a feature vector
according to Ẑ and the classification is performed with f .

1: Ŝ ← Draw q subsequences from time series from D
2: X ← Calculate dmin between time series from D and subsequences from Ŝ

3: XẐ , Ẑ ← Perform feature selection on X with respect to labels of Y

Fig. 2: Learning of the EAST representation in 3 key steps: random sub-sampling,
minimal euclidean distance and feature selection.

3 Experimentation

The objective of the experimentation is to evaluate the relevance of advanced
feature selection in a standard feature space for the temporal pattern discovery
over the classical selection scheme used by the shapelet (usually the informa-
tion gain). The classification performances are observed together with the time
complexity required by the pattern discovery with several configurations. For
this purpose, EAST is instantiated with several feature selection approaches
and classifiers for various values q of subsequences drawn. The experimentation
performed for this work is framed into the classical UCR univariate time series
classification framework (45 datasets from this repository are used).

With EAST, the feature selection stage is open to any approach. To perform
the experimentation we use some of them. Feature selection is an established
field: we do not contribute but instead we rely on it. Also, we don’t advocate
one approach is better than another. Feature selection methods are usually clas-
sified into three groups: filters, wrappers and embedded methods [6]. For the
experimentation we select one wrapper, the Recursive Feature Elimination with
cross-validation associated with a linear SVM (named RFE+SVM), and two
embedded methods, the Randomized Logistic Regression (RLR) and the Ran-



dom Forest (RF). For the RLR we test two classifiers: a SVM with a RBF
kernel and a random forest (respectively named RLR+SVM and RLR+RF).
These approaches are able to learn combinations or sets of features (i.e. sub-
sequences). On the contrary, the shapelet approach, which usually makes use
of the information gain that is part of the filters, is unable to learn such sets
or combinations. For the random draw of Ŝ several values q = |Ŝ| are tested:
q ∈ [50, 100, 500, 1000, 2000, 5000].

The results are compared with the current leading shapelet approach, the
shapelet ensemble (SHPT) [2]. The authors state that shapelet ensemble per-
forms identically or better than other shapelet approaches. We reproduce here
their results. We also compare the results with the random-shapelet (RSHPT)
[10] that has the same selection stage than the classical shapelet but on a small
fraction of the exhaustive set of subsequences. The same number of subsequences
is picked for the random-shapelets and for the EAST instantiations.

A strict evaluation protocol is required to assess the EAST representation
and the random-shapelets because they contain a random generation step. We
rely on the evaluation protocol proposed in [1] for a proper way to analyze
the performances of randomized algorithms. Each single test of the the EAST
representation and the random-shapelets is reproduced 10 times to evaluate the
variability. The complete description of the evaluation protocol of the provided
results is described in additional material [11].

3.1 Results

Classification performances

Fig. 3: Comparison of the approaches with the Nemenyi test. Groups of approaches not
significantly different (α = 0.05) are connected. CD is the critical difference.

The classification performances of the proposed approach are significantly
similar to the ones obtained by the shapelet ensemble (Figure 3 & 4). These
performances are obtained with only 2000 subsequences drawn for the best
implementation of the proposition that is an infinitesimal fraction of subse-
quences evaluated by the exhaustive shapelet ensemble: the largest tested UCR



dataset reaches 5.108 subsequences. The relevance of advanced feature selection
approaches over independent discriminant subsequences is also shown by the
experimentation. With the same number of subsequences drawn, our proposi-
tion systematically outperforms a random sampling associated with the classical
shapelet evaluation procedure based upon the information gain. The parameter
q is obviously critical, but until a certain point: with this experimentation we
observe no statistical difference in the classification performances between the
best performing configuration with q = 2000, q = 5000 and those of the shapelet
ensemble, the state-of-the-art (Figure 3). It is also worth noting the low standard
deviation in the performances, in particular for the RLR+SVM approach, with
a maximum of 2.7% (for one single dataset) with most standard deviation below
or around 1% (for q = 2000). Raw results of the experimentation are available
in additional material [11].
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Fig. 4: Scores of all the approaches based on Wilcoxon tests. Higher is better.

Fig. 5: Average classification performances of the EAST representation (RLR+SVM
5000) vs. the exhaustive shapelet ensemble. On the UCR benchmark the two approaches
have similar performances with a drastic time complexity reduction for the EAST
approach.

Time complexity For the approaches used for this experimentation, most of
the time is spent in the distance calculations between each subsequence enu-
merated and the time series. This fact is illustrated figure 6 and is especially
true for large datasets and with values of q increasing: the time spent in the
feature selection becomes insignificant. We use this specificity to compare the
time complexity of the approaches and avoid implementation or hardware bias.



The EAST representation enumerates a fixed number of subsequences, in this
work the maximal value is q = 5000. The typical shapelet approach performs an
exhaustive enumeration. Figure 7 shows that the exhaustive shapelet discovery
(SHPT) evaluates subsequences sets several order of magnitude larger than the
EAST approach while having comparable classification performances. For the
datasets used in the experimentation, the exhaustive number of subsequences
to extract varies from 20,100 (Italy Power Demand) to 524,800,000 (Star Light
Curves). For all the datasets and for significantly similar classification perfor-
mances our proposition uses q = 2000 subsequences. On the bigger dataset this
is less than 0.0002% of the exhaustive number of subsequences. The exhaustive
number of subsequences depends on L (time series length) and N (number of
time series inD). We demonstrate that the number of subsequences to draw from
S to determine Ẑ is not dependent of N . This allows a considerable gain for the
training phase on datasets with numerous time series. The following lemma is
demonstrated in additional material [11].

Lemma The probability of drawing a relevant subsequence ẑj for the classifi-
cation task is independent of the number of time series N in D.

Fig. 6: Time spent in the distance calculations vs. Time spent in the feature selection
for EAST. For small datasets (ItalyPowerDemand), the feature selection requires a
similar amount of time than the distance calculations. For larger datasets (Coffee,
Car) feature selection becomes insignificant in front of distance computations. We use
this specificity to compare the time complexity of the approaches based on the number
of distance computations and avoid implementation or hardware bias.

Fig. 7: Number of subsequences evaluated by EAST and the exhaustive shapelet discov-
ery (log scale). EAST enumerates a constant number of subsequences over the datasets
with comparable classification accuracies than the shapelet ensemble that generates
subsequences sets several orders of magnitude larger.



4 Conclusion

This work evaluates advanced feature selection relevance to discover discriminant
temporal patterns for time series classification. This approach is enabled by the
previous observation that most subsequences in a time series are redundant and
can be discarded. We state that each subsequence represented by its distance
to the time series is a feature in a feature vector on which classical feature
selection can be applied. The experimentation on 45 datasets of the UCR shows
significantly similar classification performances to the state-of-the-art with a
time complexity drastically reduced. Moreover the scalability of the approach is
demonstrated. The proposed approach may allow the discovery of sophisticated
patterns, such as multivariate patterns, thanks to the use of advanced feature
selection: this study is our next step.
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