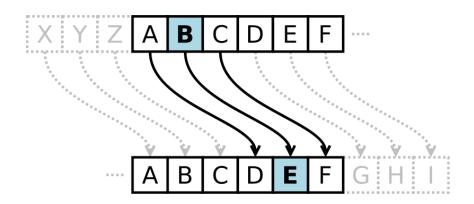


Cryptography

CISSP Guide to Security Essentials

Chapter 5

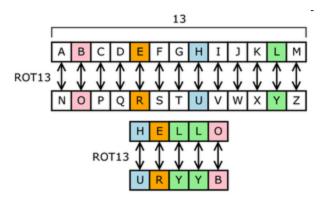

Objectives

- Applications and uses of cryptography
- Encryption methodologies
- Cryptanalysis
- Management of cryptography
- Key management

Applications and Uses of Cryptography

What Is Cryptography

- Cryptography is the science of hiding information in plain sight, in order to conceal it from unauthorized parties.
 - Substitution cipher first used by Caesar for battlefield communications


Encryption Terms and Operations

- Plaintext an original message
- Ciphertext an encrypted message
- Encryption the process of transforming plaintext into ciphertext (also encipher)
- Decryption the process of transforming ciphertext into plaintext (also decipher)
- Encryption key the text value required to encrypt and decrypt data

Encryption methodologies

Substitution Cipher

- Plaintext characters are substituted to form ciphertext
 - "A" becomes "R", "B" becomes "G", etc.
 - Character rotation
 - Caesar rotated three to the right (A > D, B > E, C > F, etc.)
 - A table or formula is used
 - ROT13 is a Caesar cipher
 - Image from Wikipedia (link Ch 5a)
 - Subject to frequency analysis attack

Transposition Cipher

 Plaintext messages are transposed into ciphertext

Plaintext:

ATTACK AT ONCE VIA NORTH BRIDGE

- Write into columns going down
- Read from columns to the right

Α	K	С	N	В
Т	Α	Е	0	R
Т	Т	٧	R	I
Α	0	I	Т	D
С	N	Α	Н	G

Transposition Cipher (cont.)

Ciphertext:

AKCNBTAEORTTVRIAOITDCNAHG

 Subject to frequency analysis attack

Α	K	С	Ν	В
_	A	Ш	0	R
Т	Т	٧	R	I
Α	0	I	Т	D
С	N	Α	Н	G

Monoalphabetic Cipher

- One alphabetic character is substituted or another
 - Caesar right-three shift:

Α	В	\bigcirc	D	Е	L	G	Η		つ	 Z
D	Е	F	G	Н		J	K	L	M	 С

Or a more random scheme:

Α	В	O	D	Ш	F	G	Ι	_	う	:	Z
W	Е	R	Т	В	Z	Р	Q	C	J	:	X

Subject to frequency analysis attack

Polyalphabetic Cipher

Two or more substitution alphabets

Plaintext	Α	В	С	D	Е	F	G	Η		 Z
Alpha 1	W	Ш	R	H	В	Z	Ը	Q	O	 X
Alpha 2	R	В		K	Q	D	X	J	Z	 Ш
Alpha 3	V	В	О	R	Ι	W	Α	X		 С
Alpha 4	M	U	Т	X	D	G	Р	0	W	 F
Alpha 5	Υ	D	V	В	٦		K	Ш	Z	 0

Polyalphabetic Cipher (cont.)

Plaintext	Α	В	C	D	Е	F	G	Ι		 Z
Alpha 1	W	Ш	R	H	В	Z	Ρ	Q	C	 X
Alpha 2	R	В		K	Q	D	X	J	Ν	 Е
Alpha 3	V	В	О	R	Η	W	Α	X		 U
Alpha 4	M	U	Т	X	D	G	Р	0	W	 F
Alpha 5	Υ	D	V	В	J	I	K	Е	Z	 O

- CAGED becomes RRADB
- Not subject to frequency attack

Running-key Cipher

- Plaintext letters converted to numeric (A=0, B=1, etc.)
- Plaintext values "added" to key values giving ciphertext

Running-key Cipher

- Modulo arithmetic is used to keep results in range 0-26
 - Add 26 if results < 0; subtract 26 if results > 26

Plaintext	Α	Т	Т	Α	С	K	Α	Т	0	N	С	Е	V	I	Α	N
Key	S	Е	C	R	Е	Т	S	Е	C	R	Е	Т	S	Е	С	R
Plaintext	0	19	19	0	2	10	0	19	14	13	2	4	21	8	0	13
Key	18	4	2	17	4	19	18	4	2	17	4	19	18	4	2	17
Sum	18	23	21	17	6	3	18	23	16	4	7	23	11	12	2	4
Ciphertext	S	Х	V	R	G	D	S	Х	Q	Е	Η	Х	L	М	С	Е

One-time Pad

- Works like running key cipher, except that key is length of plaintext, and is used only once
- Highly resistant to cryptanalysis

Plaintext	Α	Т	Т	Α	С	K	Α	Т	0	N	С	Е	V	I	Α	N
Key	Χ	V	G	7	Е	R	_	0	Q	W	J	Р	Е	K	Α	F
Plaintext	0	19	19	0	2	10	0	19	14	13	2	4	21	8	0	13
Key	23	21	6	9	3	17	8	14	16	22	9	15	4	10	0	5
Sum	23	14	25	9	5	1	8	7	4	9	11	19	25	18	0	18
Ciphertext	Х	0	Z	J	F	В	I	Н	Е	J	L	Т	Z	U	Α	U

Types of Encryption

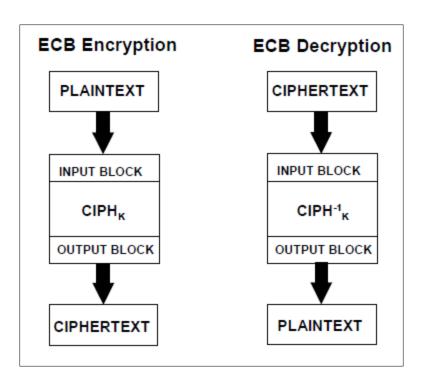
- Block cipher
 - Encrypts blocks of data, often 128 bits
- Stream cipher
 - Operates on a continuous stream of data

Block Ciphers

- Encrypt and decrypt a block of data at a time
 - Typically 128 bits
- Typical uses for block ciphers
 - Files, e-mail messages, text communications, web
- Well known encryption algorithms
 - DES, 3DES, AES, CAST, Twofish, Blowfish, Serpent

Block Cipher Modes of Operation

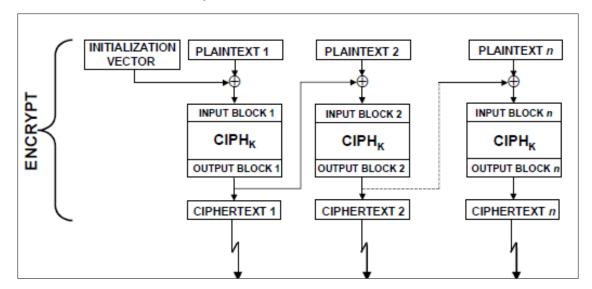
- Electronic Code Book (ECB)
- Cipher-block chaining (CBC)
- Cipher feedback (CFB)
- Output feedback (OFB)
- Counter (CTR)


Initialization Vector (IV)

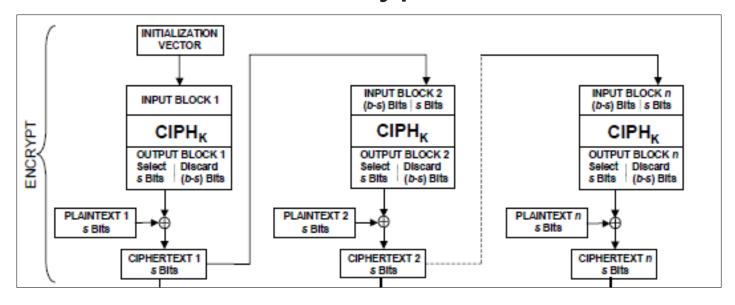
- Starting block of information needed to encrypt the first block of data
- IV must be random and should not be reused
 - WEP wireless encryption is weak because it re-uses the IV, in addition to making other errors

Block Cipher: Electronic Code Book

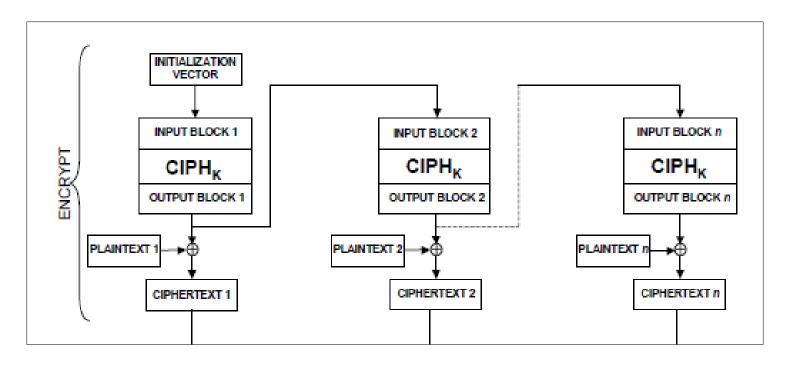
- Simplest block cipher mode
- Each block encrypted separately
 - Like plaintext encrypts to like ciphertext
 - Vulnerable to a dictionary attack
 - WEP does this
 - Microsoft made this error in their password hashes
 - Microsoft also made this error in Microsoft Office document encryption


ECB Mode

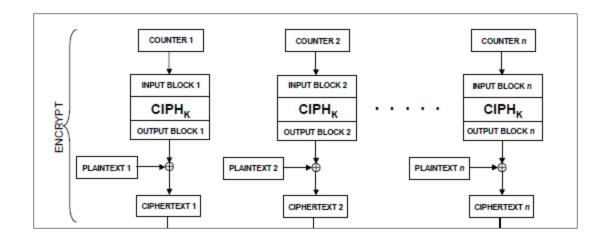
Images from NIST (link Ch 5d)


Block Cipher: Cipher-block Chaining (CBC)

- Ciphertext output from each encrypted plaintext block is used in the encryption for the next block
 - First block encrypted with IV (initialization vector)


Block Cipher: Cipher Feedback (CFB)

- Plaintext for block N is XOR'd with the ciphertext from block N-1.
- In the first block, the plaintext XOR'd with the encrypted IV


Block Cipher: Output Feedback (OFB)

 Plaintext is XOR'd with the encrypted material in the previous block to produce ciphertext

Block Cipher: Counter (CTR)

- Uses a "nonce" (a random <u>n</u>umber that is used <u>once</u>) that is concatenated with a counter or other simple function, to create a series of keys
 - Allows parallel computation

Stream Ciphers

- Used to encrypt a continuous stream of data, such as an audio or video transmission
 - A stream cipher is a substitution cipher that typically uses an exclusive-or (XOR) operation that can be performed very quickly by a computer.
- Most common stream cipher is RC4
- Other stream ciphers
 - A5/1, FISH, Phelix1, ISAAC, MUGI, Panama, Phelix,
 Pike, Sapphire-II. SEAL, SOBER-128, and WAKE

Stream Ciphers (cont.)

Encryption: simple XOR with key:

Plaintext	1	1	0	1	0	0	1	1	0	1	0	0	1	1	0	0
Key	0	1	1	0	1	0	0	1	0	1	1	0	1	0	1	0
Ciphertext	1	0	1	1	1	0	1	0	0	0	1	0	0	1	1	0

Decryption: simple XOR with the same key:

Ciphertext	1	0	1	1	1	0	1	0	0	0	1	0	0	1	1	0
Key	0	1	1	0	1	0	0	1	0	1	1	0	1	0	1	0
Plaintext	1	1	0	1	0	0	1	1	0	1	0	0	1	1	0	0

Types of Encryption Keys

Symmetric key

- A common secret that all parties must know
- Difficult to distribute key securely
- Used by DES, 3DES, AES, Twofish, Blowfish, IDEA, RC5

Asymmetric key

- Public / private key
- Openly distribute public key to all parties
- Keep private key secret
- Anyone can use your public key to send you a message
- Used by RSA. El Gamal, Elliptic Curve

Asymmetric Encryption Uses

- Encrypt message with recipient's public key
 - Only recipient can read it, using his or her private key
 - Provides confidentiality
- Sign message
 - Hash message, encrypt hash with your private key
 - Anyone can verify the signature using your public key
 - Provides integrity and non-repudiation (sender cannot deny authorship)
- Sign and encrypt
 - Both of the above

Diffie-Hellman Key Exchange

- A way to overcome the problem of exchanging encryption keys without compromising them
 - Based on difficulty of factoring large numbers into prime components

Length of Encryption Keys

- For symmetric algorithms, use at least 128 bits
- For RSA, use at least 2048 bits
 - 1024 bits no longer recommended by NIST
 - Link Ch 5e

Protection of Encryption Keys

Symmetric keys

- Must be restricted to as few people as possible
- Protected by a strong password, or encrypted again if needed

Asymmetric keys

- Private key requires protection similar to symmetric key
- Public keys can be published, even on the Internet

Protecting Keys in Applications

- More difficult to protect keys that applications must be able to access directly
- Hardening techniques
 - Separation of duties
 - Key value known only to operators, not developers or support
 - Store keys in hardware
 - Such as Trusted Platform Module
 - Use of a key encrypting key

Cryptanalysis

Cryptanalysis

- Frequency analysis
 - Analyzing frequency of characters in ciphertext
- Birthday attacks
 - Collisions in a hash function can be found in approximately sqrt(N) attempts, where N is the number of possible hash values
 - So SHA-1, 160 bits long, will have a collision in 2^80 values

Cryptanalysis

- Ciphertext only attack
 - Attacker has only ciphertext
- Chosen plaintext attack
 - Attacker is able to see encryption of selected plaintext
- Chosen ciphertext attack
- Known plaintext attack

Cryptanalysis (cont.)

- Man in the middle attack
 - Effective against Diffie-Hellman Key Exchange
 - Real public key is replaced by fake one
- Replay attack
 - Effective against SMB, any non-secure cookiebased authentication, almost all Web 2.0 sites

Applications and Management of Cryptography

Uses for Cryptography

- File encryption
 - PGP and GPG
 - WinZip (version 9 uses AES)
 - EFS (encrypting file system) for Windows
 - Crypt tool for Unix
- Encrypted volumes and disks
 - Truecrypt for Windows, Mac, Unix
 - Bitlocker for Windows Vista
 - PGP Disk
 - SafeBoot

Uses for Cryptography (cont.)

E-mail

- PGP / GPG asymmetric key (public key crypto)
- S/MIME (Secure / Multipurpose Internet Mail Extensions) – certificate based
- PEM (Privacy Enhanced Mail) not widely used, requires a single global PKI (which was never implemented)
- MOSS (MIME Object Security Services) not widely used

Uses for Cryptography (cont.)

- Protecting network communications
 - SSH
 - Replacement for telnet, rsh, rlogin
 - Secure FTP
 - IPsec
 - Encrypts all packets between established pairs of hosts
 - Used for VPNs (Virtual Private Networks)
 - SSL/TLS
 - Protects web browser traffic

Uses for Cryptography (cont.)

- Web browsing protects session contents from eavesdropping
 - SSL / TLS (Secure Sockets Layer / Transport Layer Security)
 - https: in URL
 - 40-512 bit encryption with secure key exchange
 - Server authentication common, client authentication rare
 - SET (Secure Electronic Transaction)
 - Not widely used

Key management

Key Management

- Key creation
 - Process and results must be protected
- Key protection and custody
 - Secured keys in control by the fewest number of persons

Key Management (cont.)

- Key rotation
 - Periodic update of encryption keys
- Key destruction
 - Securely destroy, to protect encrypted data to be retired
- Key escrow
 - Keys held by a trusted third party

Message Digests and Hashing

Message digest or hash

- The result of a one-way function on a file or message
- Fixed-length result regardless of message size
- Impossible (or very difficult) to derive original message from digest
- No other message should produce the same digest (such pairs are collisions)
- Algorithms
 - MD-5, SHA-1, HMAC

Error in Textbook

- The book says MD5 is stronger than SHA on page 179—that is ridiculous
- MD5 is weaker than SHA-1, but neither is considered secure any longer
- Official government recommendation: use SHA-2 Instead
 - Links Ch 5f, 5g

Digital Signatures

- Message digest that is cryptographically combined with signer's private key
 - Requires public key cryptography
 - Verifies message integrity
 - Verifies identity of signer
 - Algorithms: DSA, El Gamal, Elliptic Curve DSA

Non-repudiation

- Inability for a user to repudiate (deny) an action, because of the methods used to permit or authorize the action
 - Digital signature
 - Verifies integrity of transaction
 - Verifies identity of person performing transaction
 - Password required to use digital signature

Public Key Infrastructure (PKI)

- Online facility
 - Storage of users' public encryption keys
 - Fast lookup via an API that makes use automatic
 - PKI platforms
 - LDAP
 - Microsoft Active Directory

Encryption Alternatives

Steganography

- Data hidden in image files, subtle changes that the eye won't see; can be encrypted as well
- Many "stego" tools available

Watermarking

 Like a digital signature – a visible or invisible mark that claims ownership