
A tutorial using Docker Desktop Kubernetes

Learning to deploy Documentum
on Kubernetes

José María Sotomayor

1

OpenText ©2023 All rights reserved 22

Presentation

With this tutorial we are providing you with:

• Instructions on how to have your own

Kubernetes cluster in your laptop.

• A D2 Helm Chart already configured. You

can deploy a complete Documentum stack

with a single command.

• As much practical information as posible

about how this is done, so you can use it as

foundations for further learning.

Slides go straight to the point, but I’ve added

extensive footnotes with additional information

when possible.

Benefits:

• Quickly deploy the 23.2 Documentum stack

with a single command.

• Learning how you can do it yourself in the

future, if needed.

• Familiarize yourself with Kubernetes

technology.

• Not having to pay for a cloud Kubernetes

service just for learning purposes.

• Quickly deploy new versions of the

Documentum stack as soon as they are

released.

2

OpenText ©2023 All rights reserved 33

Steps

Have Docker
Desktop

running with
Kubernetes

enabled.

Configure
WSL to use

All CPUs and
16GB RAM.

Install Helm
with

Chocolatey

Download
software
Docker
images

Create a
Docker

image with
D2-Base

configuration

Deploy
NGINX

ingress to the
cluster

Create a
namespace
called “d2”

Deploy the
Helm Chart

Preparing the environment Preparing Docker Images Deploying the provided* charts AS-IS

* In this tutorial we will refer to the Helm charts already configured

and ready to be deployed as “the provided” charts, as opposed to

“the original” charts, this is, the charts as you would download from

Opentext Support.

3

OpenText ©2023 All rights reserved 44

Getting the tutorial package

• Download the file named “Tutorial K8s D2 23_2.7z”

accompanying this tutorial and extract it.

• The package contains three elements:

• “d2” folder – Is the 23.2 Helm chart already

configured to be deployed in your Kubernetes cluster

with a single command. We will refer to them as “the

provided” charts, for the purpose of this tutorial.

• “d2-base” folder – contains some arctifacts required

to deploy the D2 Base configuration as part of your

deployment.

• get_images.cmd – it’s a very simple script that will pull

the required Docker images from Opentext’s Docker

registry.

4

OpenText ©2023 All rights reserved 555OpenText ©2023 All rights reserved

Preparing the environment

Setting up your laptop to run Kubernetes using Docker Desktop.

5

OpenText ©2023 All rights reserved 66

Installing Docker Desktop with Kubernetes Support (1)

• Docker Desktop has an option to enable Kubernetes. It deploys a complete k8s cluster in your

laptop.

• A prerequisite to use this kubernetes flavour is to have WSL2 enabled. Complete instructions can

be found here: https://learn.microsoft.com/en-us/windows/wsl/install

• In most cases, opening an elevated Powershell and issuing the command wsl --install will

suffice (you may need to enable it before under “Add Windows Features”).

• Instructions to install Docker Desktop can be found here:

https://docs.docker.com/desktop/install/windows-install/

• No need to install additional Linux distros. Docker Desktop will install the required ones.

6

OpenText ©2023 All rights reserved 77

Installing Docker Desktop with Kubernetes Support (2)

• Once it’s installed and running, click

settings, select “Kubernetes” in the left

pane and click on “Enable Kubernetes”.

You should see both Docker and k8s in

green after a while.

• You can double check your cluster is
running with kubectl get nodes
command:

7

OpenText ©2023 All rights reserved 88

Configuring WSL for additional CPU&RAM
• We recommend host system to feature 32GB RAM, so at least 16GB

can be easily assigned to WSL2’s VM.

• The CPU and RAM resources of WSL2 by default, are not enough

for deploying the Documentum platform.

• Shutdown Docker desktop.

• Shutdown WSL2 by issuing wsl --shutdown

• Create a new file under C:\Users\<your_user_name> called .wslconfig (dot wslconfig) with the

following content (copy and paste from this slide notes):

• Next time you launch Docker Desktop, the new values (all vCPUs & 16GB RAM) will be picked up.

----------------Source for .wslconfig--------------------------

Settings apply across all Linux distros running on WSL 2
[wsl2]

Limits VM memory to use no more than 16 GB, this can be set as whole numbers
using GB or MB
memory=16GB

#Comment (or do not include) the following line so VM uses all available Logical
Processors
#processors=6

8

OpenText ©2023 All rights reserved 99

Installing Helm with Chocolatey

• Helm will be used to automatically deploy our workload to the k8s cluster using Helm charts.

• Easiest way to install Helm is via Chocolatey package manager (on Windows)

• Chocolatey can be downloaded from: https://chocolatey.org/install

• Once Chocolatey is installed, issue the following command from an elevated Powershell:
• choco install Kubernetes-Helm

• Deploy mysql to your cluster to test Helm is working as expected:
• helm repo add bitnami https://charts.bitnami.com/bitnami
• helm repo update
• helm install bitnami/mysql --generate-name

• Test mysql is running by issuing:
• kubectl get pods

• Once is working, uninstall it to save resources:

9

OpenText ©2023 All rights reserved 101010OpenText ©2023 All rights reserved

Preparing Docker images

Downloading Documentum binary images and creating an image

with the D2 Base configuration

10

OpenText ©2023 All rights reserved 1111

Downloading software images

• Binaries are downloaded as Docker images from Opentext’s Docker registry.

• Login into Opentext’s Docker registry with your Opentext username and password:

docker login registry.opentext.com

• Pull images from the registry. For your convenience, use a cmd script such as:

• This operation may take quite some time (only once) depending on your internet connection.

• A sample script is provided, valid for 23.2. (get_images.cmd). Not all images are used.

The downloading (pulling) process will take some hours, but you can leave it totally
unattended. Compare this to downloading every single binary installer one by one
from Opentext Support.
Postgres database is pulled directly from Docker’s hub (no need to be logged in). Is
tagged as registry.opentext.com/cs/pg for convenience (there’s a variable in Helm
chart for the repository name –registry.opentext.com and it has been historically
named as cs/pg by Engineering)

----------------------------Source for get_images.cmd:-------------------------------

docker pull postgres:15.1
docker tag postgres:15.1 registry.opentext.com/cs/pg:15.1
docker pull registry.opentext.com/dctm-d2pp-classic-ol:23.2
docker pull registry.opentext.com/dctm-d2pp-config-ol:23.2
docker pull registry.opentext.com/dctm-d2pp-installer-ol:23.2
docker pull registry.opentext.com/dctm-d2pp-rest-ol:23.2
docker pull registry.opentext.com/dctm-d2pp-smartview-ol:23.2
docker pull registry.opentext.com/dctm-d2pp-ijms-ol:23.2
docker pull registry.opentext.com/dctm-tomcat:23.2
docker pull registry.opentext.com/dctm-server:23.2

11

docker pull registry.opentext.com/dctm-d2pp-ijms-ol:23.2
docker pull registry.opentext.com/dctm-xcp-installer:23.2
docker pull registry.opentext.com/dctm-xcp-apphost:23.2
docker pull registry.opentext.com/dctm-workflow-designer:23.2
docker pull registry.opentext.com/otds-server:23.1.1
docker pull registry.opentext.com/dctm-rest:23.2
docker pull registry.opentext.com/dctm-xplore-indexserver:22.1.2
docker pull registry.opentext.com/dctm-xplore-indexagent:22.1.2
docker pull registry.opentext.com/dctm-xplore-cps:22.1.2
docker pull registry.opentext.com/dctm-admin:23.2
docker pull registry.opentext.com/dctm-content-connect:23.2
docker pull registry.opentext.com/dctm-content-connect-dbinit:23.2
docker logout

11

OpenText ©2023 All rights reserved 1212

Downloaded images are in your local Docker registry

• Docker keeps all

downloaded images in

a local registry.

• Select “Images” on the

Docker Desktop app to

see them.

• Filter by “opentext” to

see all the images

you’ve downloaded.

12

OpenText ©2023 All rights reserved 1313

Creating a Docker image with D2-Base configuration

• You need to create a Docker image containing the D2-Base application DAR and ZIP files.

• The provided Helm charts are already configured to use it.

• In powershell, cd to the directory named “d2-base”. Inside there’s a Dockerfile that will create the

image for you.

• Issue the following command to create the Docker image (one line, the dot at the end must remain)

docker build -f Dockerfile -t d2customdar:latest --build-arg
CUSTOM_FILE_NAME=D2-Base-Export-Config.zip --build-arg CUSTOM_DAR_FILE=D2-
Base.dar --no-cache .

• The provided helm charts are already configured to leverage the image and deploy the

configuration.

Why is this step needed?

When CS and D2-Config pods do boot up, several initialization and installation
scripts are run.
Some of these scripts are in charge of deploying DAR files and D2 configurations.
These scripts expect to find DAR and config files at some preconfigured directories.
But obviously, Opentext is shipping the Docker images without our configurations.
How can we include them?
We are creating this small Docker image just containing (mostly) our DAR and ZIP
files inside it.
During deployment, we are creating a container from our image, and we make it
part of the CS and D2 Config pods.
This way, we are mounting the directories containing our files inside the original
pod’s filesystem, so the scripts can pick them up for installation.

-------Source for Dockerfile --------

FROM busybox:1.28
ARG CUSTOM_FILE_NAME
ARG CUSTOM_DAR_FILE

13

RUN adduser -D -H dmadmin &&\
mkdir -p /opt/D2-install/custom && \
chown -R dmadmin:dmadmin /opt/D2-install/custom
COPY --chown=dmadmin:dmadmin $CUSTOM_FILE_NAME /opt/D2-

install/custom/
COPY --chown=dmadmin:dmadmin $CUSTOM_DAR_FILE /opt/D2-

install/custom/
CMD sh

13

OpenText ©2023 All rights reserved 141414OpenText ©2023 All rights reserved

Deploying the provided chart AS-IS

All you need is love Helm

14

OpenText ©2023 All rights reserved 1515

Deploying NGINX ingress to the cluster

• Docker Desktop’s Kubernetes don’t provide an ingress service by default.

• For POC/Demo purposes, a regular NGINX service will suffice (no need for NGINX+)

• To deploy the NGINX service, issue this command (one line):

kubectl apply -f https://raw.githubusercontent.com/kubernetes/ingress-
nginx/controller-v1.7.0/deploy/static/provider/cloud/deploy.yaml

• This version is proved to work with the 23.2 stack and k8s version 1.25.4 (as installed by Docker

Desktop v. 4.17.1). In the future you may need to find a more recent NGINX version.

• You can test your ingress controller is working with:

• Important: see slide notes below.

By default nginx is configured to accept request body sizes of
máximum 1MB. This means that if you try to upload to D2 a document
bigger than this size, an error will occur.
Please edit values.yaml and modify dctm-ingress definition to
include the highlighted annotations (in bold), before deploying
D2’s Helm chart. Line is around 1092.

dctm-ingress:
enabled: true
#prefix for the ingress name
ingressPrefix: dctm
ingress:

#No need to configure host: and clusetrDomainName: if
configureHost is false.

configureHost: true
#Domain name of the ingress controller in the cluster

namespace
host: dctm-ingress
clusterDomainName: *ingress_domain

15

#To accomodate cluster 1.22
class: nginx
#annotations for the ingress object
#annotations: {}

 annotations:

 nginx.ingress.kubernetes.io/proxy-body-size: 50m

15

OpenText ©2023 All rights reserved 1616

Creating a namespace for D2

• In k8s, a namespace acts as a sort of logical cluster. We will create one for our D2 deployment.

• Issue the following command:

kubectl create namespace d2

• Check that your new namespace has been created with:

kubectl get namespaces

• Note that the provided Helm charts do asume that you have created the “d2” namespace.

• From now on, when you issue kubectl and Helm commands, you’ll have to append the –n d2
switch, to specify you are working inside the “d2” namespace i.e. :

16

OpenText ©2023 All rights reserved 1717

Deploying the Helm chart

• If you have performed the following prerequisites, you can deploy the provided Helm chart without

any modification:

• Have Docker Desktop running with Kubernetes enabled.

• Configured WSL to use 16GB RAM and all vCPUs.

• Installed Helm

• Downloaded software Docker images

• Created a Docker image with D2-Base configuration

• Deployed NGINX

• Created the “d2” namespace.

• In an elevated Powershell, cd to the directory called “d2” (it’s the directory containining the file

“values.yaml”).

• Issue the following command (single line):

helm install d2 . --values=dockerimages-values.yaml --values=d2-resources-
values-test-small.yaml --namespace d2

• This command will deploy a complete Documentum 23.2 stack automatically.

helm install d2 . : install the chart found in the current directory (.) and deploy it
with the name “d2”
--values=dockerimages-values.yaml --values=d2-resources-
values-test-small.yaml they do provide
information about what docker images to use and sizing
information. Note that values.yaml is also picked by default. You have

more information about these files in the following slides.
--namespace d2 specifies that elements must be deployed into the d2 namespace.

17

OpenText ©2023 All rights reserved 1818

Monitoring the Helm chart deployment (1) – Tips

• The first time you deploy this chart it can take between one to two hours to deploy, depending on your laptop

specs, specially for the content server (but once it’s installed, subsequent restarts will take no more than 10

minutes)

• As a rule of thumb, pods are synchronized during deployment, and they patiently wait for their dependencies.

i.e. Content Server will wait for the docbroker to become alive, D2 will wait for the content server, etc.

• As soon as you launch the Helm chart, start issuing kubectl get pods -n d2 commands every 10

seconds or so. You should see their status going into “Running”. Most common error you may find is

“ImagePullBackOff” meaning that a Docker image can’t be found. Double check that you’ve included all the
correct names in dockerimages-values.yaml. In theory, if you used all the provided files without changes,

no errors of this type are expected.

• If you experience these errors, it’s better to cancel the deployment, then correct the issue in the yaml files, and

redeploy again until you see all pods going happily into “Running” status.

• To cancel and erase the deployment (everything inside the d2 namespace):
• helm uninstall d2
• kubectl delete pvc --all -n d2 (wait a little after this command so all bound pvs are deleted)

18

OpenText ©2023 All rights reserved 1919

Monitoring the Helm chart deployment (2) - Tips

• Even if pods are in “Running” status, they won’t become available until they show “1/1” under the

“Ready” column.

• Each pod will periodically test itself until its liveliness and readiness probe are positive. At this point

it will appear as really available for the rest of the pods via its exposed services.

• Be patient, as some of these probes are tested with several minutes in between, especially during

first installation.

• Especially during first installation, you may see pods restarting themselves after several minutes.

This is expected behaviour. If their dependencies take time to be ready, they restart hoping for these

dependencies to be available next time. Eventually they will.

• See next slide for several commands that you may use to obtain more details during deployment.

• Be aware that, if you use “describe” commands, you will be able to read errors at the end of the

output. Note that the problem may have dissapeared even if there’s not a “Problem fixed” message.

19

OpenText ©2023 All rights reserved 2020

Monitoring the Helm chart deployment (3) - Commands

You can use the following commands to monitor how things are going with your deployment.

• kubectl get pods -n d2
Provides information about pods’ status. You can “get” anything else (services, nodes, ingress…)

• kubectl logs <pod name> -n d2
Provides the log for a given pod

• kubectl describe pod <pod name> -n d2
Provides detailed information about the pod configuration, detailed readiness and liveliness

information, etc. You can “describe” anything else (services, nodes, ingress…)

• kubectl exec --stdin --tty -n d2 <pod name> -- /bin/bash
Opens a linux shell into a pod so you can browse for additional information. Most of the platform
files are located under /opt/dctm and /opt/dctm_docker typically. From here you can cat the

docbase log or any other file of your interest.

With “kubectl get” and “kubectl describe” you can obtain information about any
component. For instance:

kubectl get services –n d2 : list all deployed services
kubectl get ingress –n d2 : list all deployed ingresses
kubectl get pvc –n d2 : list all persistent volumen claims

kubectl describe service <service name> -n d2 : describe the service called
<service name>
kubectl describe ingress <ingress name> -n d2 : describe the ingress called
<ingress name>

20

OpenText ©2023 All rights reserved 2121

Monitoring the Helm chart deployment (4) - Commands

• kubectl logs <pod name> -n d2
Prints the log of the specified pod. Add a -f switch to tail the log.

• kubectl get deployments -n d2
Shows all deployments in the specified namespace (d2).

• kubectl get statefulsets -n d2
Shows all statefulsets in the specified namespace (d2).

With “kubectl get” and “kubectl describe” you can obtain information about any
component. For instance:

kubectl get services –n d2 : list all deployed services
kubectl get ingress –n d2 : list all deployed ingresses
kubectl get pvc –n d2 : list all persistent volumen claims

kubectl describe service <service name> -n d2 : describe the service called
<service name>
kubectl describe ingress <ingress name> -n d2 : describe the ingress called
<ingress name>

21

OpenText ©2023 All rights reserved 2222

Checking all pods are launched correctly

Some pods are running, some initializing, only

postgres is ready

More pods are reaching the Running state… Finally everyone is up and running.

Until the docbase initialization process is complete,

CS (dcs-pg-0) won’t be ready and most of the pods

will restart from time to time, until CS is ready. This

may take more than 90 minutes to finish.

When all pods are 1/1 Ready and in running status,

the deployment has been completed and we can

access our apps.

* These screenshots have been taken in different

sessions.

22

OpenText ©2023 All rights reserved 2323

Inspecting correct docbroker initialization

23

OpenText ©2023 All rights reserved 2424

Inspecting correct Content Server Initialization

…

24

OpenText ©2023 All rights reserved 2525

Inspecting docbase initialization

CS pod will show as “Ready 0/1” for a while because the docbase installation keeps going.

This is where most of the time goes for the deployment (+1 hour).

You can cat the log every few minutes or tail it to inspect how the docbase initialization progresses. Lunch time!

…

25

OpenText ©2023 All rights reserved 262626OpenText ©2023 All rights reserved

Accessing the applications

26

OpenText ©2023 All rights reserved 2727

Updating hosts file

• To simulate a proper domain name without a DNS, we will include our domain in the hosts file.

• Open values.yaml and find the line:

• Copy this value (dctm-ingress.d2.jm.net)

• Edit C:\Windows\System32\drivers\etc\hosts and add an entry with your current ip and

the domain name you’ve copied:

• You must update the file again everytime your ip changes.

27

OpenText ©2023 All rights reserved 2828

Application endpoints

• Applications and services are exposed to the world outside the cluster via an ingress configuration.

Issue this command to know how are they exposed:

kubectl describe ingress dctm-ingress -n d2

• For instance, if you want to access Documentum Administrator, you just have to point your browser

to: https://dctm-ingress.d2.jm.net/da

28

OpenText ©2023 All rights reserved 2929

Accessing our applications

• Browse to the application
endpoint i.e. https://dctm-

ingress.d2.jm.net/da/

• You will get a warning about the
security certificate not being

valid. Click on “Advanced” and
proceed to site anyway. This is
due to the certificate being self
signed (normal for demo envs).

29

OpenText ©2023 All rights reserved 3030

Manual steps – OTDS Configuration

• DA will work with a simple inline user dmadmin:password. But to Access D2, Smartview, etc, you

will need to configure OTDS.

• OTDS must be configured following the steps described in page 24 of “OpenText Documentum D2

CE 23.2 - Cloud Deployment Guide”
(https://support.opentext.com/csm?id=kb_article_view&sys_kb_id=9030388947de6510f3f9da7a436d431f)

• The URL suggested in step 3c is valid unless you’ve modified service names in values.yaml:

http://dcs-pg-jms-service:9080/dmotdsrest

• Step 6, create an OAuth client, use “d2_oauth_client” as its name, unless you modified it in

values.yaml

• Step 6 a, you can find your ingress URL around line 23 of values.yaml, or by issuing a kubectl
describe ingress dctm-ingress -n d2 command. If you have not modified the provided

charts, it will be: https://dctm-ingress.d2.jm.net

• These steps could also be automated in the Helm charts, but I did not had the
time to try it out yet.

• These steps must be done only once, after first installation is complete.

30

OpenText ©2023 All rights reserved 313131OpenText ©2023 All rights reserved

Modifying the configuration

Overview of the changes made to the original Helm charts

31

OpenText ©2023 All rights reserved 3232

Configuring Docker images

• In dockerimages-values.yaml, provide the Docker repository name

• The following variables may be left as default:

• For each component, ensure the Docker image name and tag matches the one you’ve downloaded:

A complete list of the image names and tags can be obtained from the Cloud
Deployment Guide.
For those components you won’t be using (i.e. Graylog, fluentd, etc) you can leave
them as they are. If the component is disabled, the image won’t be used.
I’ve commented some sections as, for instance, I’m not going to use Process
Engine:

JM COMMENTED
#- name: "peinstaller-init"
image: "registry.opentext.com/dctm-xcp-

installer:23.2"
imagePullPolicy: *pull_policy_type
command: ['/bin/sh', '-c', 'yes |sudo cp -Rf

/pescripts/* /opt/dctm_docker/customscriptpvc/']
volumeMounts:
- name: dcs-data-pvc
mountPath: /opt/dctm_docker/customscriptpvc
subPath: initcontainercustomscripts/dcs-pg

Also, you’re responsable to add some extra init containers with the images you’ve

32

created with D2 configuration DAR and ZIP files, i.e. under d2config:

- name: init
image: d2customdar:latest
imagePullPolicy: *pull_policy_type
command: ['/bin/sh', '-c', 'yes | cp -rf /opt/D2-

install/custom/* /customdir/']
volumeMounts:

- name: customconfig
mountPath: /customdir

32

OpenText ©2023 All rights reserved 3333

Modifying variables to fit your environment

Deployment is configured in the file values.yaml. You don’t have to configure everything. Just some

global values and the elements you want to deploy.

• rwoStorage & rwmStorage: change it from trident-nfs to hostpath

• Find and replace all ocurrences of <namespace> by your namespace (i.e. d2)

• Find and replace all ocurrences of <docbase_name> by your docbase (i.e. docbase1)

• Find and replace all ocurrences of cfcr-lab.bp-paas.otxlab.net by your own domain (i.e. jm.net)

• You will find that these replacements will indirectly configure several values across the file. (i.e)

values.yaml is not shipping empty by default, but contains most of the values
engineering uses to deploy and test the charts.
It’s a matter of time and practice to develop your eye to identify the values you must
change, the ones that you can leave as they are, the ones that you don’t need etc.
In my experience, once you have managed to configure and deploy a Helm chart
once and become familiar with the key values, the next one will be significantly
easier. You can just compare your latest working values.yaml file (i.e 23.2) with the
new one you have downloaded (i.e. 23.4) and transpose the correct values to the
new one. Always keep an eye on new sections or configurations that may have
been added.
A good excercise you could do is to compare my provided values.yaml with the
original one (see specific slide for comparing files). That will provide you with an
idea of the changes I’ve made to values.yaml to fit my needs.
Also, there are no shortcuts here: we must know Documentum and learn
Kubernetes as much as posible.

• trident-nfs is the storage class used by engineering in their own environments.
With Docker Desktop we only have hostpath available by default. All persistent
information will be stored in our laptop filesystem. This is not a good practice if
we had more tan one node in our cluster, but for a single node demo environment

33

is good enough.
• cfcr-lab.bp-paas.otxlab.net is the domain name used by engineering in their own

environments. We can choose to have any domain we want. By including this
domain in our hosts file in Windows, we can créate the illusion of using a real
domain name exposed in the Internet.

33

OpenText ©2023 All rights reserved 3434

Enabling or disabling features

• Deploying Documentum features is just a matter of activating (true) or disabling (false) them, and in

some cases providing some additional configuration parameters.

• Some of them are enabled at variable level. Let’s say you don’t want to use Graylog, turn it to false:

• Some others are enabled at the beginning of their own section.

There’s always a “enabled” attribute that you can set to true or false.

Let’s say you want to enable Documentum REST services. Just turn it to true:

• The provided sample Helm chart deploys postgres, content server, docbroker, administrator, REST,

xplore, otds, d2 classic, smartview and config.

If instead of using the provided Helm chart you want to learn to configure it yourself,
I highly recommend to start it simple: postgres, docbroker, server and da. Also
disable graylog, Kafka and OTDS components. Once you have this process
mastered and you are able to log in to Documentum Administrator, you can start
enabling other features one at a time.
If you think you’ve broken your environment, don’t hesitate to reset your Kubernetes
cluster using the option in Docker Desktop settings and start again. The less
components you try to deploy until you get the hang of it, the faster you will
progress.

34

OpenText ©2023 All rights reserved 3535

Setting up resources

• In the original Helm charts, there are several files named as “d2-resources-values-

[sample_description].yaml”.

• These files basically describe:

• Sizes of volume claims

• CPU requests and limits

• Memory requests and limits

• Starting number of Pods per element (i.e. 2x Content Server)

• Chances are that even the smallest of the environments

(test_small) are too much for your laptop.

• In the provided “d2-resources-values-test-small.yaml” we have

stripped out the requests and limits sections, and downsized

all deployments to just one pod each.

• By doing this, k8s will use CPU and memory as specified in the

original charts. This will be enough for most demo / learning

use cases.

This approach is acceptable for POC/Demo purposes, not for production. But in a
laptop we have limited resources (my laptop uses 11GB just to show the Desktop).
By default, our Helm charts deploy the components as deployments or statefulsets
with at least 2 pods per service, which is great to provide HA out of the box. But in
our laptop we don’t have enough memory to have a mínimum of “two of everything”,
so this is why we have downsized all components to just one pod.

35

OpenText ©2023 All rights reserved 3636

Setting up resources – downscaling and upscaling

• If you don’t want a given component to be deployed, just set enabled=false in values.yaml.

• For temporary adjustments, you can downscale or upscale the number of pods.

• Documentum components are deployed in the form of statefulsets or deployments:

• You can downscale them to 0 if you want to

temporarily “shut down” a component and save

memory / cpu: i.e:

• Conversely, you can scale to 1 again:

36

OpenText ©2023 All rights reserved 3737

Comparing documents with VS Code

• Right click on any file

and select “Select for

Compare”

• Right click on a different

file and select

“Compare with

Selected”.

• This is a very powerful

feature for upgrades, as

we can quickly

transpose our values

from our current chart to

a new version.
Original Helm chart VS modified Helm chart (as provided for this tutorial)

37

OpenText ©2023 All rights reserved 383838OpenText ©2023 All rights reserved

WIP Slides

Following procedures have not been fully tested yet,

but you may find them helpful.

38

OpenText ©2023 All rights reserved 3939

Architecture

Needs rework, as it is

from a previous D2

version.

Backend (content server,

docbroker, etc is missing)

39

OpenText ©2023 All rights reserved 4040

Deploy Kubernetes Dashboard

• Deploy application by issuing (single line):

kubectl apply -f
https://raw.githubusercontent.com/kubernetes/dashboard/v2.
7.0/aio/deploy/recommended.yaml

• Create a file named dashboard-admin.yaml with the

contents shown on the right side.

• Create the user issuing:

kubectl apply -f .\dashboard-admin.yaml

• Create a token issuing:

kubectl -n kubernetes-dashboard create token admin-user

• Issue kubectl proxy and navigate to the URL

shown below. Paste the token from previous

command.

apiVersion: v1
kind: ServiceAccount
metadata:

name: admin-user
namespace: kubernetes-dashboard

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:

name: admin-user
roleRef:

apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: cluster-admin

subjects:
- kind: ServiceAccount

name: admin-user
namespace: kubernetes-dashboard

http://localhost:8001/api/v1/namespaces/kubernetes-dashboard/services/https:kubernetes-dashboard:/proxy/

40

OpenText ©2023 All rights reserved 4141

Kubernetes Dashboard showing “d2” namespace

41

OpenText ©2023 All rights reserved 4242

Enable metrics server

• Metrics server allows to have detailed graphical information of CPU and Memory usage.

• Enable metrics server by issuing:

kubectl apply -f https://github.com/kubernetes-sigs/metrics-server/releases/latest/download/components.yaml

• It won’t launch correctly because of the TLS certs. You must patch the metrics server deployment.

To do so:

• In Kubernetes Dashboard, select “Deployments”. In the top namespace selector, select “All”. In the

list, click “metrics-server”.

• Edit the deployment by clicking the

pencil icon in the right of the blue header.

• Edit the highlighted line and click “Update”

42

OpenText ©2023 All rights reserved 4343

43

OpenText ©2023 All rights reserved 4444

Enable metrics server (2)

• The information shown by the metrics server is very useful to know real memory and CPU

consumption.

• You can adjust the “resources” section of your yaml files to adapt to your environment, as a small

demo environment with one user (hey, that’s you!) will consume even less than the smallest of the

environments included with the charts.

44

OpenText ©2023 All rights reserved 4545

Resetting the cluster

• If you want to start fresh, you

can use “Reset Kubernetes

cluster”. This will erase all

deployments but will keep your

Docker images.

• Sometimes you may need to

delete all data in the WSL VM to

retrieve space and performance.

Using “Clean/Purge Data” will

do it. You will loose your

downloaded images. See next

slide before doing this.

45

OpenText ©2023 All rights reserved 4646

Keeping your Docker images

• Docker images are downloaded (pulled) to your local Docker registry. It takes a long time to

complete. This registry, the images and its contents will dissapear if you purge Docker’s data.

• For testing purposes sometimes purging this data is neccesary (several install / uninstall operations

of the Helm chart may have a severe impact on performance when using hostpath storageclass).

• Once you have downloaded the images at least once and they are in your Docker registry, you can

save them as TAR files by issuing this command:

docker save --output dctm-rest_23.2.tar registry.opentext.com/dctm-rest:23.2

• Conversely, you can load the images from the TAR files way quicker than downloading them again:

docker load --input dctm-rest_23.2.tar

• “save_images.cmd” and “load_images.cmd” scripts are provided for your convenience.

• Execute “save_images” from a directory not synchronized with Core Share or Onedrive.

• By using this procedure you can re-push the images to your Docker registry in about 20 minutes

instead of 2 hours

Proper way to do this is by keeping our own Docker image registry, but for testing
purposes this is cumbersome and requires more administration.

46

OpenText ©2023 All rights reserved 4747

Deploying Eventhub (1)

• Pull required images:

docker pull registry.opentext.com/fluentd-4.4.2-1:23.2

docker pull registry.opentext.com/kafka-2.13-3.4.0:23.2

• Add them to dockerimages-values.yaml

(already correct in 23.2 helm chart)

• Enable kafka & fluentd in values.yaml

47

OpenText ©2023 All rights reserved 4848

Deploying Eventhub (2)

• In 23.2 Helm chart Kafka deployment is configured to use trident-nfs storageclass. Add storageclass

information to values.yaml so Kafka is deployed using hostpah storage.

When eventhub is deployed, fluentd is added as a container to dcs-pg pod, dctm-rest,
etc. To ssh into these pods now, you need to specify the container you want to connect

to, i.e:

kubectl exec --stdin --container dcs-pg --tty -n d2 dcs-pg-0 -- /bin/bash

Otherwise you will connect to fluentd’s container by default.

48

OpenText ©2023 All rights reserved 4949

Deploying a browser for Kafka data (1)

• Download Helm Chart from: https://github.com/obsidiandynamics/kafdrop

• Encode the following kafka properties as base 64 (https://www.base64encode.org/):

security.protocol=SASL_PLAINTEXT
sasl.mechanism=SCRAM-SHA-512
sasl.jaas.config=org.apache.kafka.common.security.scram.ScramLoginModule required username="kafka-user"
password="kafka-password";

• This string gets encoded as:

c2VjdXJpdHkucHJvdG9jb2w9U0FTTF9QTEFJTlRFWFQKc2FzbC5tZWNoYW5pc209U0NSQU0tU0hBLTUxMgpzYXNsLmphYXMuY29uZmlnPW9yZy5hcGFjaGUua2Fma
2EuY29tbW9uLnNlY3VyaXR5LnNjcmFtLlNjcmFtTG9naW5Nb2R1bGUgcmVxdWlyZWQgdXNlcm5hbWU9ImthZmthLXVzZXIiIHBhc3N3b3JkPSJrYWZrYS1wYXNzd2
9yZCI7

• Include this encoded string as

value for “properties” in values.yaml.

• Include
kfk-0.kfk.d2.svc.cluster.local:9092

as brokerConnect

49

OpenText ©2023 All rights reserved 5050

Deploying a browser for Kafka data (2)

• Create a namespace for Kafdrop

kubectl create namespace kafdrop

• From the directory containing the Helm Chart

Deploy Kafkadrop with

helm install kafdrop . --namespace kafdrop

• To access Kafkadrop, issue:

kubectl proxy

Browse to http://localhost:8001/api/v1/namespaces/kafdrop/services/http:kafdrop:9000/proxy

50

OpenText ©2023 All rights reserved 5151

Deploying RabbitMQ

• RabbitMQ is useful for managing messaging queues. It can be installed quickly into your cluster.

• Deploy RabbitMQ by issuing:

kubectl create namespace rmq

helm install rabbitmq oci://registry-1.docker.io/bitnamicharts/rabbitmq --set
persistence.enabled=false -n rmq

• No PVCs configured. Data won’t be persisted.

• Port forward ports for AMQP API and Management console

kubectl port-forward --namespace rmq svc/rabbitmq 5672:5672

kubectl port-forward --namespace rmq svc/rabbitmq 15672:15672

• By default decoded password: eVnaXY67NEZLEu7f

• By default decoded cookie: kzEfLHmq58FplhktDslWUCMt1yAkcH4H

51

OpenText ©2023 All rights reserved 5252

Accessing RabbitMQ

• Once the port is forwarded, browse to http://127.0.0.1:15672/

52

OpenText ©2023 All rights reserved 5353

RabbitMQ: Sending and receiving messages
Send.js Receive.js

53

opentext.comopentext.com

Thank you

twitter.com/opentext

linkedin.com/company/opentext

54

