"Tanks" For The Memories...

Mod-Cons, Buffer Tanks, Expansion Tanks & You...

Modulating Boilers

- Variable firing rates
 - Adjust output to match load
 - Internal microprocessor adjust gas/air mix to burner
- Based on:
 - System Delta T maintain
 - Outdoor reset
 - Maintain calculated temp
 - Can't? Fire it up!

It's All About The BTU's

- ≈ 2% of heating season at/near ODT
 - 50% of heating season at ½ load or less
- Turn down ratio
 - Modulating gas valve, fan
 - 0-10V DC signal ramps burner up/down
 - 5:1 means boiler can fire @ 20% firing rate

Still Possible Short Cycling

- 100k BTU boiler
 - 5:1 lowest rate is 20k
 - Microzones short-cycle
 like crazy
 - EVEN UNDER DESIGN CONDITIONS!!!!!!

How can we minimize/prevent?

Option1 Hydraulic Separator

Some Examples...

Option 2 - Buffer Tank

- Adds mass to mod-con
- Reduces short-cycling
- Boiler piped to/ from buffer tank
- Zone S & R's piped to buffer tank

Piping Schematic

Superstor

How Big?

- Minimum boiler firing rate Smallest zone = BTU surplus
- BTU surplus × Desired min. run time (usually 10 min.) = Cycle factor
- Cycle factor \div ($\Delta T \times 500$) = Tank capacity (gallons)

Example...

- 100,000 BTU Mod/con with 4-1 turndown ratio
 - Minimum firing rate?
- Smallest zone 8,000 BTUH
- 25,000 8,000 = 17,000 BTUH
- $17,000 \times 10 \text{ minute cycle} = 170,000$
- 170,000 ÷ 10,000 (Delivery ΔT of 20 × 500) =
 17 gallon tank

That's Some VOLUME!!!

What about the expansion tank?

•
$$V = V_{\text{system}} \times \left[\frac{D_{\text{cold}}}{D_{\text{hot}}} - 1 \right] \times \left[\frac{P_{\text{relief valve}} + 9.7}{P_{\text{relief valve}} - P_{\text{charge}} - 5} \right]$$

• Huh?

Define The Terms...

- V = minimum required exp. tank volume
- V_{system} = total system volume, gallons
- D_{cold} = density of water at fill temp (60°f)
- D_{hot} = density of water at operating temp
- P_{relief valve} = boiler relief valve setting
- P_{charge} = exp. tank charge pressure

Water Density (lbs/ft³)

•
$$60^{\circ}f = 62.34$$

•
$$100^{\circ}f = 62.00$$

•
$$110^{0}$$
f = 61.84

•
$$120^{\circ}f = 61.73$$

•
$$130^{\circ} f = 61.54$$

•
$$140^{\circ}f = 61.39$$

•
$$150^{\circ}f = 61.20$$

•
$$160^{\circ}f = 61.01$$

•
$$170^{\circ}f = 60.79$$

•
$$180^{\circ}f = 60.57$$

•
$$190^{\circ}f = 60.39$$

Boiler Water Content

- Look it up
- Some examples:
 - Triangle Tube Prestige ≈ 3.3 gallons
 - Buderus GB 142 ≈ 1.3 gallons
 - Viessmann Vitodens 100 ≈ .87 gallons
- Radiation
- Buffer tank

Piping Water Content

 Copper - gallons per foot:

$$-\frac{1}{2}$$
" = 0.016

$$- \frac{3}{4}$$
" = 0.027

$$-1$$
" = 0.046

$$-1\frac{1}{4}$$
" = 0.068

$$-1\frac{1}{2}$$
" = 0.096

• PEX - gallons per 100':

$$- \frac{3}{8}$$
" = 0.497

$$-\frac{1}{2}$$
" = 0.917

$$- \frac{5}{8}$$
" = 1.392

$$- \frac{3}{4}$$
" = 1.832

$$-1" = 3.067$$

Radiation Water Content

- Baseboard use water content of ¾"
 pipe
- Panel rads look 'em up...

Example...

H 11 RADIATOR with Fins						
Height	Order Codes	Length	Output (BTU/hr)	Weight (lbs)	Water Content (gals)	
	6H11060	23-5/8"	3565	21.2	0.72	
0 Tb -	6H11080	31-1/2"	4754	28.2	0.96	
6 Tube 18"	6H11100	39-3/8"	5942	34.4	1.17	
	6H11140	55-1/8"	8319	48.5	1.65	
	6H11180	70-7/8"	10696	62.6	2.13	
	8H11060	23-5/8"	4490	28.2	0.96	
0. T., b.	8H11080	31-1/2"	5986	37.6	1.30	
8 Tube 24"	8H11100	39-3/8"	7483	45.8	1.60	
	8H11140	55-1/8"	10475	64.6	2.20	
	8H11180	70-7/8"	13469	83.4	2.84	
10 Tube 30"	10H11060	23-5/8"	5385	35.4	1.20	
	10H11080	31-1/2"	7181	47.2	1.60	
	10H11100	39-3/8"	8976	57.5	1.95	
	10H11140	55-1/8"	12566	81.1	2.75	
	10H11180	70-7/8"	16156	104.7	3.55	

Column & Tube Radiators

- Find height, # of tubes or columns
- How many sections?
- Use chart to convert to EDR

(Equivalent Direct Radiation - 170 BTUH/SF)

- Example...
 - Tube type radiator
 - 5 tubes, 26" high
 - 7 sections

	13"	16"	18"	20"	22"	23"	26"	30"	32"	36"	38"	45"
3 Tubes				1.72		2.00	2.33	3.00		3.50	3.50	
4 Tubes				2.25		2.50	2.75		3.50	4.25		
5 Tubes				2.67		3.00	3.50	4.33	4.33	5.00	6.00	
6 Tubes				3.00		3.50	4.00		5.00			
7 Tubes	2.60	3.50		4.20			4.75					
1 Column				1.50		1.67	2.00		2.50		3.00	
2 Cols.				2.00		2.33	2.67		3.33		4.00	5.00
3 Cols.			2.25		3.00		3.75		4.50		5.00	6.00
4 Cols.			3.00		4.00		5.00		6.50		8.00	10.0
5 Cols.	3.00	3.75	4.50	5.00		6.30	7.00		8.50		10.0	

3.5 ft² per section × 7 sections = 24.5 ft² EDR per radiator

(or 4,165 BTUH)

Convert To Water Content

Column radiators: 0.114 gallons/sf² EDR

Tube radiators: 0.056 gallons/sf² EDR

- Example:
 - 24.5 sf² EDR tube radiator ×
 0.056 gallons/sf² EDR =
 1.37 gallons of water content

Sample System

- 1,000' of ½" PEX in basement
- 140' of ¾" copper
- 50' of 3/4" fin-tube baseboard another
- 30' of 1' copper
- 5 tube-type radiators, 120 ft² total EDR
- 20 gallon buffer tank
- 0.87 gallons in boiler

What Do We Have?

- 1,000' ½" PEX × .917 gal/100'
- 140' 3/4" Cu × .027 gal/foot
- 50' 3/4" BB × .027 gal/foot
- 30' 1" Cu × .046 gal/foot
- $120 \text{ ft}^2 \text{ EDR} \times .056 \text{ gal/ft}^2 \text{ EDR}$
- 20 gallon buffer tank
- Boiler water content
 - Total

- = 9.17 gallons
- = 3.78 gallons
- = 1.35 gallons
- = 1.38 gallons
- = 6.72 gallons
- = 20 gallons
- = .87 gallons
- = 43.27 gallons

$$V = V_{\text{system}} \times \left[\frac{D_{\text{cold}}}{D_{\text{hot}}} - 1 \right] \times \left[\frac{P_{\text{relief valve}} + 9.7}{P_{\text{relief valve}} - P_{\text{charge}} - 5} \right]$$

Plug It In...

- D_{cold} at $60^{\circ}f = 62.34$
- D_{hot} at $150^{\circ}f = 61.20$
- Preliefvalve = 27 psi
- $P_{charge} = 12 PSI$

$$V = V_{\text{system}} \times \left[\frac{D_{cold}}{D_{hot}} - 1 \right] \times \left[\frac{P_{relief \, valve} + 9.7}{P_{relief \, valve} - P_{charge} - 5} \right]$$

$$V = V_{\text{system}} \times \begin{bmatrix} \frac{D_{cold}}{D_{hot}} - 1 \end{bmatrix} \times \begin{bmatrix} \frac{P_{relief \, valve} + 9.7}{P_{relief \, valve} - P_{charge} - 5} \end{bmatrix}$$

$$V = 43.26 \times \begin{bmatrix} \frac{62.34}{61.20} - 1 \end{bmatrix} \times \begin{bmatrix} \frac{27 + 9.7}{27 - 12 - 5} \end{bmatrix}$$

$$V = V_{\text{system}} \times \left[\frac{D_{\text{cold}}}{D_{\text{hot}}} - 1 \right] \times \left[\frac{P_{\text{relief valve}} + 9.7}{P_{\text{relief valve}} - P_{\text{charge}} - 5} \right]$$

$$V = 43.26 \times \left[\frac{62.34}{61.20} - 1 \right] \times \left[\frac{27 + 9.7}{27 - 12 - 5} \right]$$

$$V = 43.26 \times \left[1.02 - 1 \right] \times \left[\frac{36.7}{10} \right]$$

$$V = 43.26 \times .02 \times 3.67$$

V = 3.18 gallon tank acceptance volume

Check The Specs...

RADIANT EXTROL® Tanks for Radiant Systems

Model Number		Max. Accept. Volume	A Height	B Diameter	System Conn.1	Shipping Weight
	(Gallons)	(Gallons)	(Inches)	(Inches)	(Inches)	(lbs.)
RX-15	2.0	0.9	12 %	8	¾ NPTM	5
RX-30	4.4	3.2	15½	11	¾ NPTM	9
RX-60	10.3	10.3	191/4	15%	¾ NPTF	23

DIMENSIONS & CAPACITIES

Model	Capacity Gallons	Maximum Acceptance Volume
HTX 15	2.1	1.0
HTX 30	4.5	2.5
HTX 60	6.0	3.0
HTX 90	15.0	6.0

MODEL	TANK VOL.	ACCEPT. VOL.	CONNECTION
	gal.	@12 psi	
ETX-15	2.1	1.0	1/2" MNPT
ETX-30	4.5	2.5	1/2" MNPT
ETX-60	6.0	3.0	1/2" MNPT
ETX-90	15.0	6.0	3/4" MNPT

Just For Giggles, Try 180°F

$$V = V_{\text{system}} \times \left[\frac{D_{\text{cold}}}{D_{\text{hot}}} - 1 \right] \times \left[\frac{P_{\text{relief valve}} + 9.7}{P_{\text{relief valve}} - P_{\text{charge}} - 5} \right]$$

$$V = 43.26 \times \left[\frac{62.34}{60.57} - 1 \right] \times \left[\frac{27 + 9.7}{27 - 12 - 5} \right]$$

$$V = 43.26 \times \left[1.03 - 1 \right] \times \left[\frac{36.7}{10} \right]$$

At 180°F

 $V = 43.26 \times .03 \times 3.67$

V = 4.76 gallon tank capacity

Now what size tank?

DIMENSIONS & CAPACITIES

Medal	Capacity	Maximum Acceptance
Model	Gallons	Volume
HTX 15	2.1	1.0
HTX 30	4.5	2.5
HTX 60	6.0	3.0
HTX 90	15.0	6.0

Want A Simpler Way?

- Tank Volume = System volume × 0.122
- Estimates at 210^o boiler temp
- WILL oversize your tank

