Circulators \& Indirects..

What To Use

Long Ago...

Brrrrim

What's The Problem?

- Arithmetic...
- Not enough storage
- Not enough recovery

What We'II Learn Today..

- Interpret data
- Size pump/pipe
- Options

Understand The Specs

SPECIFICATIONS AND PERFORMANCE R/TINGS
ULTRA RESIL VTIAL SERIES

MODEL	DIMENSIONO		CAPAACITY	HEAT EXCH. SURFACE	RECOMM. flow rate	PRESSURE DROP (FEET)	180° BOILER WATER FIRST HOUR RATINGS*		200° BOILER WATER FIRST HOUR RATINGS*	
	HT.	DIA.					$140^{\circ} \mathrm{F}$	$115^{\circ} \mathrm{F}$	$140{ }^{\circ} \mathrm{F}$	$115^{\circ} \mathrm{F}$
SSU-20	27	19 M	20	$15 \mathrm{SQ} . \mathrm{FT}$.	8	6.0	121 gal	168 gal	136 gal	186 gal
SSU-30	$391 / 2^{\prime}$	19 M	30	$15 \mathrm{SQ} . \mathrm{FT}$.	8	6.0	154 gal	212 gal	172 gal	234 gal
SSU-30LB	$281 /{ }^{\prime \prime}$	$231 / 4$	30	$15 \mathrm{SQ} . \mathrm{FT}$.	8	6.0	169 gal	234 gal	189 gal	257 gal
SSU-45	$621 / 2^{\prime}$	19 M	45	20 SQ . FT.	10	7.9	212 gal	292 gal	237 gal	322 gal
SSU-60	$621 / 2^{\prime}$	$231 / 4$	60	20 SQ . FT.	10	7.9	206 gal	370 gal	298 gal	405 gal
SSU-80	72	$231 /{ }^{\prime \prime}$	80	34 SQ . FT.	12	9.1	330 gal	440 gal	370 gal	503 gal
SSU-119	$731 / 2$	27*	119	34 SQ . FT.	14	11.3	423 gal	564 gal	474 gal	645 gal

${ }^{+}$DOE TEST METHOD BASED ON $90^{\circ} \mathrm{F}$ TEMPERATURE RISE, $50^{\circ} / 140^{\circ} \mathrm{W} /$ BOILER WATER AT $180^{\circ} \mathrm{F}$

TANK SIZE	FLOOR TO BOILER SUPPLY	FLOOR TO BOILER RETURN	FLOOR TO DOMESTIC OUT	DOMESTIC CONNECTIONS	TEST PRESSURE	WORKING PRESSURE	SHIPPING WEIGHT	180 BOILER BTU/SIZE
2SU BOILER								
BTU/SIZE								

The Top Chart Giveth...

MODEL	DIMENSIONS		CAPACITY	HEAT EXCH.SURFACE	RECOMM. FLOW RATE	PRESSURE DROP (FEET	180° BOILER WATER FIRST HOUR RATINGS*		200° BOILER WATER FIRST HOUR RATINGS*	
	HT.	DIA.					$140^{\circ} \mathrm{F}$	$115^{\circ} \mathrm{F}$	$140{ }^{\circ} \mathrm{F}$	$115^{\circ} \mathrm{F}$
SSU-20	27	19 M	20	15 SQ . FT.	8	6.0	121 gal	168 gal	136 gal	186 gal
SSU-30	$39 \mathrm{l} \mathbf{/ 2}^{\prime}$	191/4	30	$15 \mathrm{SQ} . \mathrm{FT}$.	8	09	154 gal	212 gal	172 gal	234 gal
SSU-30LB	$281 /{ }^{\prime \prime}$	23	30	$15 \mathrm{SQ} . \mathrm{FT}$.	8	6.	169 gal	234 gal	189 gal	267 gal
SSU-45	$52 \mathrm{k}{ }^{\prime}$	19 M	45	20 SQ . FT.	10	7.9	212 gal	292 gal	237 gal	322 gal
SSU-60	$521 /{ }^{\prime}$	$231 / 4$	60	20 SQ . FT.	10	7.9	266 gal	370 gal	296 gal	405 gal
SSU-80	72	$231 / 4$	80	34 SQ . FT.	12	9.1	320 gal	440 gal	370 gal	503 gal
SSU-119	$73 \mathrm{y}{ }^{\prime}$	27*	119	34 SQ. FT.	14	11.3	423 gal	564 gal	474 gal	645 gal

${ }^{*}$ DOE TEST METHOD BASED ON 90° E TEMPERATURE RISE, $50^{\circ} / 140^{\circ} \mathrm{W} /$ BOILER WATER AT $180^{\circ} \mathrm{F}$
45 gallons on hand!
What's not

212 or 292 gallons

 first hour!
The Bottom Chart Taketh Away...

TANK SIZE	FLOOR TO BOILER SUPPLY	$\begin{gathered} \text { FLOOR TO } \\ \text { BOILER } \\ \text { RETURN } \end{gathered}$	$\begin{gathered} \text { FLOOR TO } \\ \text { DOMESTKC } \\ \text { OUT } \end{gathered}$	DOMESTIC CONNECTIONS	TEST PRESSURE	WORKING PRESSURE	SH^{\prime} WEI	$\begin{gathered} 80 \mathrm{BOILEF} \\ \mathrm{BTU} / \mathrm{SIZE} \end{gathered}$	BOILEF VSIZE
SSU-20	9	4 $1 / 2$	22^{*}	W/ NPT MALE	200 PS	150 PS	60 LBS .	84,000	000
SSU-30	9	$41 / 2$	$34{ }^{\prime \prime}$	W/ NPT MALE	300 PS	150 PS	72 LBS .	102,000	100
SSU-30LB	9	$41 / 2$	$23^{\prime \prime}$	W/ NPT MALE	200 PS 8	150 PS	79 LBS.	114,000	101,000
SSU-45	9	$41 / 2$	46^{\prime}	\% NPT MALE	300 PS	150 PS	88 LBS .	141,000	161,000
SSU-60	9	$41 / 2$	46'	1" NPT MALE	300 PS	150 PS	110 LBS.	174,000	198,000
SSU-80	29^{\prime}	6	$691 /{ }^{\prime}$	$1 / 2^{\prime \prime}$ NPT MALE	300 PS	150 PS	141 LBS.	212,000	241,000
SSU-119	$301 / 8$	$71 /{ }^{\prime}$	66'	1 M/ NPT MALE	300 PSI	150 Pg	210 LRS .	289,000	301.000

That's IF you have 141,000 BTUH at the boiler!

The Math

- $\approx 75 \%$ usable

capacity

- Coil space
- Cold water
- 45 gallons $\times .75 \approx$ 34 gallons available

Indirect Water Heater

Figuring Recovery

- BTU's \& GPM
- How many GPM with BTUH available?
- Boiler Output \div (8.33 $\times 60 \times 90$) or $(45,000)$

Do The Math!

- $141,000 \div(8.33 \times 60 \times 90)$
$-141,000 \div 45,000$
- 3.13 GPM
- Call it 3 GPM
- 3 GPM $\times 60$ min
= 180 gallons

S000_,

- 34 gallons stored
+ 180 gallons recovered
= 214 first hour gallons
- $214 \div 60=3.5$ GPM, all day long!

- Big IF!!!!!

Conditions

- Need 141,000 Net BTUH boiler
- Proper boiler piping
- Pick the right circulator!

Smaller Boiler?

- Net boiler $\div(8.33 \times 60 \times 90)$ (or 4,000$)$

ITe.

- 75,000 $\div 45,000$
$=1.67$ GPM
- 1.67 GPM × 60 $=1001^{\text {st }}$ hour gallons recovery

What Do We Get?

- 34 gallons stored + 100 gallons recovered
- $1341^{\text {st }}$ hour gallons
- < 2¼ gallons per minute

 TIM空

memegenerator.net

- Should be okay...

Pipe Sizing

Doyour best work.

MODEL	DIMENSIONS		CAPACITY	HEAT EXCH.SURFACE	REOOMM. FLOW RATE	PRESSURE DROP (FEET)	180° BOILER WATER FIRST HOUR RATINGS*		200° BOILER WATER FIRST HOUR RATINGS*	
	HT.	DIA.					$140^{\circ} \mathrm{F}$	$116^{\circ} \mathrm{F}$	$140{ }^{\circ} \mathrm{F}$	$116^{\circ} \mathrm{F}$
SSU-20	27	19 \%*	20	15 SQ. FT.	8	6.0	121 gal	168 gal	136 gal	185 gal
SSU-30	$391 / 2^{\prime}$	19 \%	20	15 S		6.0	154 gal	212 gal	172 gal	224 gal
SSU-30LB	$281 / 2$	$23^{1 / 2}$	20	SQ.		6.0	169 gal	234 gal	189 gal	257 gal
SSU-45	$521 / 2^{\prime}$	19 / ${ }^{*}$	45	20 SQ . FT.	10	7.9	212 gal	292 gal	237 gal	322 gal
SSU-60	$521 / 2^{\prime}$	$23^{1 / 3}$	60	20 SQ. FT.	10	7.9	266 gal	370 gal	298 gal	405 gal
SSU-80	72	$23^{1 / 3}$	80	$34 \mathrm{SQ} . \mathrm{FT}$.	12	9.1	330 gal	440 gal	370 gal	503 gal
SSU-119	$731 /{ }^{\prime}$	27^{*}	119	34 SQ. FT.	14	11.3	423 gal	564 gal	474 gal	645 gal

${ }^{\circ}$ DOE TEST METHOD BASED ON $90^{\circ} \mathrm{F}$. TEMPERATURE RISE, $50^{\circ} / 140^{\circ} \mathrm{W} /$ BOILER WATER AT $180^{\circ} \mathrm{F}$
Recommended flow rate: 10 GPM
Coil head loss 7.9'

What's That Mean?

- 10 GPM = 1" pipe MIN!
- Keep tank close minimal piping/fittings

Example

- S\&R piping = 35
- 12 90's @ 2.5' ea = 30'
- 65^{\prime} total $\times .04=2.6^{\prime}$

- $7.9^{\prime}+2.6^{\prime}=10.5^{\prime}$ total head

$007 ? 008 ?$

10 GPM @ 10½’

0015-MSF-IFC Multi-Speed Circulator

Flow ($\mathrm{m}^{3} / \mathrm{h}$)

Caveats Galore

- Store @ 1400, mix at fixture
- $90^{\circ} \Delta T$ worst case
- Usage varies

Temper FI!

ande

- Tempering valve helps
- Makes tank "bigger"
- $\left(T_{\text {mix }}-T_{\text {inc }}\right) \div\left(T_{\text {stored }}-T_{\text {inc }}\right)$
= Storage Factor

Create Capacity

- $\left(112^{0}-50^{\circ}\right) \div\left(140^{0}-50^{\circ}\right)$
- $62 \div 90=.69$ Stor Fac
- Usable Cap \div Stor Fac = Tempered Capacity

Nearly 50\% increase!

- $34 \div .69=>49$ gallons

Let's Push The 'OI Envelope...

- $\left(112^{0}-50^{\circ}\right) \div\left(160^{\circ}-50^{\circ}\right)$
- $62 \div 110=.56$ Stor Fac
- $34 \div .56=60$ gallons

- Same usable capacity as 80 gallon tank!

One Absolute...

- Gotta gotta gotta use a fail-safe tempering valve!

Take Aways

- Size pipe to spec
- Pick right pump, speed! f
- Size tank capacity to biggest load
- Watch fixture flow rates

Formulas...

- Tank capacity $\times .75$ = usable capacity
- Recovery $=$ Boiler Output $\div(8.33 \times 60 \times 90)$ (or 45,000)
- Usable capacity + Recovery $=1$ st Hour
- $\left(T_{\text {mix }}-T_{\text {inc }}\right) \div\left(T_{\text {stored }}-T_{\text {inc }}\right)=$ Storage factor

