## "Tanks" For The Memories...



## Modulating Boilers

- Variable firing rates
- Adjust output to match load
- Internal microprocessor adjust gas/air mix to burner
- Based on:
- System Delta T - maintain

- Outdoor reset
- Maintain calculated temp
- Can't? Fire it up!


## It's All About The BTU's

- $\approx 2 \%$ of heating season at/near ODT
- $50 \%$ of heating season at $1 / 3$ load or less
- Turn down ratio
- Modulating gas valve, fan

- 0-10V DC signal ramps burner up/down
- 5:1 means boiler can fire @ 20\% firing rate


## Still Possible <br> Short Cycling

- 100k BTU boiler
- 5:1 - lowest rate is 20 k
- Microzones - short-cycle like crazy
- EVEN UNDER DESIGN CONDITIONS!!!!!!
- How can we minimize/prevent?



## Option1 - Hydraulic Separator



## Some Examples...



## Option 2 Buffer Tank

- Adds mass to mod-con
- Reduces short-cycling
- Boiler piped to/ from buffer tank
- Zone S \& R's piped to buffer tank



## Piping Schematic



## How Big?

- Minimum boiler firing rate - Smallest zone = BTU surplus
- BTU surplus $\times$ Desired min. run time (usually 10 min.) = Cycle factor
- Cycle factor $\div(\Delta \mathrm{T} \times 500)=$ Tank capacity (gallons)



## Example...

- 100,000 BTU Mod/con with 4-1 turndown ratio
- Minimum firing rate?
- Smallest zone - 8,000 BTUH
- 25,000-8,000 = 17,000 BTUH
- $17,000 \times 10$ minute cycle $=170,000$
- 170,000 $\div 10,000($ Delivery $\Delta T$ of $20 \times 500)=$ 17 gallon tank


## That's Some VOLUME!!!

- What about the expansion tank?
- $\mathrm{V}=\mathrm{V}_{\text {sssiem }} \times\left[\frac{\mathrm{D}_{\text {cold }}}{\mathrm{D}_{\text {hot }}}-1\right] \times\left[\frac{\mathrm{P}_{\text {relif vave }}+9.7}{\mathrm{P}_{\text {relef evane }}-\mathrm{P}_{\text {charge }}-5}\right]$
- Huh?


## Define The Terms...

- $\mathrm{V}=$ minimum required exp. tank volume
- $\mathrm{V}_{\text {ssam }}=$ total system volume, gallons
- $D_{\text {cud }}=$ density of water at fill temp (60f)
- $D_{\text {pot }}=$ density of water at operating temp
- $P_{\text {reteravane }}=$ boiler relief valve setting
- $P_{\text {darase }}=$ exp. tank charge pressure


## Water Density ( $\mathrm{lbs} / \mathrm{ft}^{3}$ )

- $60^{\circ} \mathrm{f}=62.34$
- $100^{\circ} \mathrm{f}=62.00$
- $110^{0} \mathrm{f}=61.84$
- $120^{\circ} \mathrm{f}=61.73$
- $130^{\circ} \mathrm{f}=61.54$
- $140^{\circ} \mathrm{f}=61.39$
- $150^{0} \mathrm{f}=61.20$
- $1600^{\circ} \mathrm{f}=61.01$
- $170^{\circ} \mathrm{f}=60.79$
- $180^{\circ} \mathrm{f}=60.57$
- $190^{\circ} \mathrm{f}=60.39$


## Boiler Water Content

- Look it up
- Some examples:
- Triangle Tube Prestige $\approx 3.3$ gallons
- Buderus GB $142 \approx 1.3$ gallons
- Viessmann Vitodens $100 \approx .87$ gallons
- Radiation
- Buffer tank


## Piping Water Content

- Copper - gallons per foot:
- $1 / 2 "=0.016$
- $3 / 4 "=0.027$
- $1^{\prime \prime}=0.046$
- $11 / 4 "=0.068$
- $11 / 2$ " $=0.096$
- PEX - gallons per 100':
$-3 / 8^{\prime \prime}=0.497$
- $1 / 2^{\prime \prime}=0.917$
- $5 / 8^{\prime \prime}=1.392$
- $3 / 4 "=1.832$
- $1^{\prime \prime}=3.067$


## Radiation Water Content

- Baseboard - use water content of $3 / 4$ " pipe
- Panel rads - look ‘em up...

$\overline{\overline{\text { Doparabestornt }}}$


## Example

H 11 RADIATOR with Fins

| Height | Order Codes | Length | Output (BTU/hr) | Weight (lbs) | Water Content (gals) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} 6 \text { Tube } \\ 18^{\prime \prime} \end{gathered}$ | 6H11060 | 23-5/8" | 3565 | 21.2 | 0.72 |
|  | 6H11080 | 31-1/2" | 4754 | 28.2 | 0.96 |
|  | 6 H 11100 | 39-3/8" | 5942 | 34.4 | 1.17 |
|  | 6 H 11140 | 55-1/8" | 8319 | 48.5 | 1.65 |
|  | 6 H 11180 | 70-7/8" | 10696 | 62.6 | 2.13 |
| $\begin{aligned} & 8 \text { Tube } \\ & 244^{\prime \prime} \end{aligned}$ | 8 H 11060 | 23-5/8" | 4490 | 28.2 | 0.96 |
|  | 8 H 11080 | 31-1/2" | 5986 | 37.6 | 1.30 |
|  | 8 H 11100 | 39-3/8" | 7483 | 45.8 | 1.60 |
|  | 8 H 11140 | 55-1/8" | 10475 | 64.6 | 2.20 |
|  | 8 H 11180 | 70-7/8" | 13469 | 83.4 | 2.84 |
| $\begin{gathered} 10 \text { Tube } \\ 30^{\prime \prime} \end{gathered}$ | 10 H 11060 | 23-5/8" | 5385 | 35.4 | 1.20 |
|  | 10H11080 | 31-1/2" | 7181 | 47.2 | 1.60 |
|  | 10 H 11100 | 39-3/8" | 8976 | 57.5 | 1.95 |
|  | 10 H 11140 | 55-1/8" | 12566 | 81.1 | 2.75 |
|  | 10H11180 | 70-7/8" | 16156 | 104.7 | 3.55 |

## Column \& <br> Tube Radiators

- Find height, \# of tubes or columns
- How many sections?
- Use chart to convert to EDR (Equivalent Direct Radiation 170 BTUH/SF)
- Example...
- Tube type radiator
- 5 tubes, 26 " high
- 7 sections


|  | 13' | \|16" | 18" | 201 | 22" | 23" | 26" | 30" | 32" | 36 | 38 | 45" |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 Tubes |  |  |  | 1.72 |  | 2.00 | 2.33 | 3.00 |  | 3.50 | 3.50 |  |
| 4 Tubes |  |  |  | 2.25 |  | 2.50 | 2.75 |  | 3.50 | 4.25 |  |  |
| 5 Tubes |  |  |  | 2.67 |  | 3.00 | 3.50 | 4.33 | 4.33 | 5.00 | 6.00 |  |
| 6 Tubes |  |  |  | 3.00 |  | 3.50 | 4.00 |  | 5.00 |  |  |  |
| 7 Tubes | 2.60 | 3.50 |  | 4.20 |  |  | 4.75 |  |  |  |  |  |
| 1 Column |  |  |  | 1.50 |  | 1.67 | 2.00 |  | 2.50 |  | 3.00 |  |
| 2 Cols. |  |  |  | 2.00 |  | 2.33 | 2.67 |  | 3.33 |  | 4.00 | 5.00 |
| 3 Cols. |  |  | 2.25 |  | 3.00 |  | 3.75 |  | 4.50 |  | 5.00 | 6.00 |
| 4 Cols. |  |  | 3.00 |  | 4.00 |  | 5.00 |  | 6.50 |  | 8.00 | 10.0 |
| 5 Cols. | 3.00 | 3.75 | 4.50 | 5.00 |  | 6.30 | 7.00 |  | 8.50 |  | 10.0 |  |

## $3.5 \mathrm{ft}^{2}$ per section $\times 7$ sections $=$ $24.5 \mathrm{ft}^{2}$ EDR per radiator (or 4,165 BTUH)

## Convert To Water Content

- Column radiators:
- Tube radiators:
0.114 gallons/sf² EDR
0.056 gallons/sf² EDR
- Example:
- 24.5 sf $^{2}$ EDR tube radiator $\times$ 0.056 gallons/sf² EDR = 1.37 gallons of water content



## Sample System

- 1,000 ' of $1 / 2^{\prime \prime}$ PEX in basement
- 140 ' of $3 / 4$ " copper
- 50 o irs in intube baseboard another
- 30' of 1' copper
- 5 tube-type radiators, $120 \mathrm{ft}^{2}$ total EDR
- 20 gallon buffer tank
- 0.87 gallons in boiler


## just

## What Do We Have?

- $1,000^{\prime} 1 / 2^{\prime \prime}$ PEX $\times .917 \mathrm{gal} / 100^{\prime}=9.17$ gallons
- $140^{\prime} 3 / 4^{\prime \prime} \mathrm{Cu} \times .027$ gal/foot $=3.78$ gallons
- 50 ’ $3 / 4$ " BB $\times .027$ gal/foot
- 30' 1 " $\mathrm{Cu} \times .046$ gal/foot
- $120 \mathrm{ft}^{2}$ EDR $\times .056 \mathrm{gal} / \mathrm{ft}^{2}$ EDR $=6.72$ gallons
- 20 gallon buffer tank $=20$ gallons
- Boiler water content
- Total
$=1.35$ gallons
$=1.38$ gallons
$=.87$ gallons
$=43.27$ gallons


## The FORMULA!!!

## Plug It In...

- $\mathrm{D}_{\text {cold }}$ at $60^{\circ} \mathrm{f}=62.34$
- $\mathrm{D}_{\text {hot }}$ at $150^{\circ} \mathrm{f}=61.20$
- $\mathrm{P}_{\text {relefenane }}=27 \mathrm{psi}$
- $\mathrm{P}_{\text {chage }}=12 \mathrm{PSI}$



## The FORMULA!!!

$\mathrm{V}=\mathrm{V}_{\text {sssiem }} \times\left[\frac{\mathrm{D}_{\text {cold }}}{\mathrm{D}_{\text {hot }}}-1\right] \times\left[\frac{\mathrm{P}_{\text {relefervane }}+9.7}{\mathrm{P}_{\text {relefer vave }}-P_{\text {charge }}-5}\right]$

## The FORMULA!!!

$$
\begin{aligned}
V & =V_{\text {sssem }} \times\left[\frac{D_{\text {cold }}}{D_{\text {hot }}}-1\right] \times\left[\frac{P_{\text {relief vave }}+9.7}{P_{\text {relef vave }}-P_{\text {charge }}-5}\right] \\
V & =43.26 \times\left[\frac{62.34}{61.20}-1\right] \times\left[\frac{27+9.7}{27-12-5}\right]
\end{aligned}
$$

## The FORMULA!!!

$$
\begin{aligned}
& V=V_{\text {spesem }} \times\left[\frac{D_{\text {cotd }}}{D_{\text {not }}}-1\right] \times\left[\frac{P_{\text {refifitase }}+9.7}{P_{\text {reiferanaso }}-P_{\text {ctagge }}-5}\right] \\
& V=43.26 \times\left[\frac{62.34}{61.20}-1\right] \times\left[\frac{27+9.7}{27-12-5}\right] \\
& V=43.26 \times[1.02-1] \times\left[\frac{36.7}{10}\right]
\end{aligned}
$$

## The FORMULA!!!!

$V=43.26 \times .02 \times 3.67$
$\mathrm{V}=3.18$ gallon tank acceptance volume

## Check The Specs...

## RADIANT EXTROL ${ }^{\circledR}$ Tanks for Radiant Systems

| Model <br> Number | Tank <br> Volume <br> (Gallons) | Max. Accept. <br> Volume <br> (Gallons) | A <br> Height <br> (Inches) | B <br> Diameter <br> (Inches) | System <br> Conn. <br> (Inches) <br> (In | Shipping <br> Weight <br> (lbs.) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RX-15 | 2.0 | 0.9 | $12^{5 / 8}$ | 8 | $3 / 4$ NPTM | 5 |
| RX-30 | 4.4 | 3.2 | $151 / 2$ | 11 | $3 / 4$ NPTM | 9 |
| RX-60 | 10.3 | 10.3 | $191 / 4$ | $153 / 8$ | $3 / 4$ NPTF | 23 |

## DIMENSIONS \& CAPACITIES

| Model | Capacity <br> Gallons | Maximum <br> Acceptance <br> Volume |
| :---: | :---: | :---: |
| HTX 15 | 2.1 | 1.0 |
| HTX 30 | 4.5 | 2.5 |
| HTX 60 | 6.0 | 3.0 |
| HTX 90 | 15.0 | 6.0 |


| MODEL | TANK VOL | ACGEPT. <br> VOL | CONNEGTION |
| :--- | :---: | :---: | :---: |
|  | gal. | $@ 12 p s i$ |  |
| ETX-15 | 2.1 | 1.0 | $1 / 2^{\prime \prime}$ MNPT |
| ETX-30 | 4.5 | 2.5 | $1 / 2^{\prime \prime}$ MNPT |
| ETX-60 | 6.0 | 3.0 | $1 / 2^{\prime \prime}$ MNPT |
| ETX-90 | 15.0 | 6.0 | $3 / 4^{\prime \prime}$ MNPT |

## Just For Giggles, Try $180^{\circ} \mathrm{F}$

$$
\begin{aligned}
& \mathrm{V}=43.26 \times\left[\frac{62.34}{60.57}-1\right] \times\left[\frac{27+9.7}{27-12-5}\right] \\
& \mathrm{V}=43.26 \times[1.03-1] \times\left[\frac{36.7}{10}\right]
\end{aligned}
$$

## At $180^{\circ} \mathrm{F}$

$$
V=43.26 \times .03 \times 3.67
$$

$\mathrm{V}=4.76$ gallon tank capacity

# DIMENSIONS \& CAPACITIES 

Now what size tank?

| Model | Capacity <br> Gallons | Maximum <br> Acceptance <br> Volume |
| :---: | :---: | :---: |
| HTX 15 | 2.1 | 1.0 |
| HTX 30 | 4.5 | 2.5 |
| HTX 60 | 6.0 | 3.0 |
| HTX 90 | 15.0 | 6.0 |

## Want A Simpler Way?

- Tank Volume $=$ System volume $\times 0.122$
- Estimates at $210^{\circ}$ boiler temp
- WILL oversize your tank


